Counteracting Duration Bias in Video Recommendation via Counterfactual Watch Time
- URL: http://arxiv.org/abs/2406.07932v2
- Date: Thu, 13 Jun 2024 09:08:32 GMT
- Title: Counteracting Duration Bias in Video Recommendation via Counterfactual Watch Time
- Authors: Haiyuan Zhao, Guohao Cai, Jieming Zhu, Zhenhua Dong, Jun Xu, Ji-Rong Wen,
- Abstract summary: Watch time prediction suffers from duration bias, hindering its ability to reflect users' interests accurately.
Counterfactual Watch Model (CWM) is proposed, revealing that CWT equals the time users get the maximum benefit from video recommender systems.
- Score: 63.844468159126826
- License:
- Abstract: In video recommendation, an ongoing effort is to satisfy users' personalized information needs by leveraging their logged watch time. However, watch time prediction suffers from duration bias, hindering its ability to reflect users' interests accurately. Existing label-correction approaches attempt to uncover user interests through grouping and normalizing observed watch time according to video duration. Although effective to some extent, we found that these approaches regard completely played records (i.e., a user watches the entire video) as equally high interest, which deviates from what we observed on real datasets: users have varied explicit feedback proportion when completely playing videos. In this paper, we introduce the counterfactual watch time(CWT), the potential watch time a user would spend on the video if its duration is sufficiently long. Analysis shows that the duration bias is caused by the truncation of CWT due to the video duration limitation, which usually occurs on those completely played records. Besides, a Counterfactual Watch Model (CWM) is proposed, revealing that CWT equals the time users get the maximum benefit from video recommender systems. Moreover, a cost-based transform function is defined to transform the CWT into the estimation of user interest, and the model can be learned by optimizing a counterfactual likelihood function defined over observed user watch times. Extensive experiments on three real video recommendation datasets and online A/B testing demonstrated that CWM effectively enhanced video recommendation accuracy and counteracted the duration bias.
Related papers
- SWaT: Statistical Modeling of Video Watch Time through User Behavior Analysis [15.246875830547056]
We propose a white-box statistical framework that translates various user behavior assumptions in watching (short) videos into statistical watch time models.
We test our models extensively on two public datasets, a large-scale offline industrial dataset, and an online A/B test on a short video platform with hundreds of millions of daily-active users.
arXiv Detail & Related papers (2024-08-14T18:19:35Z) - Conditional Quantile Estimation for Uncertain Watch Time in Short-Video Recommendation [2.3166433227657186]
We propose the Conditional Quantile Estimation (CQE) framework to model the entire conditional distribution of watch time.
CQE characterizes the complex watch-time distribution for each user-video pair, providing a flexible and comprehensive approach to understanding user behavior.
In particular, the online deployment of CQE in KuaiShow has led to significant improvements in key evaluation metrics.
arXiv Detail & Related papers (2024-07-17T00:25:35Z) - Dynamic Erasing Network Based on Multi-Scale Temporal Features for
Weakly Supervised Video Anomaly Detection [103.92970668001277]
We propose a Dynamic Erasing Network (DE-Net) for weakly supervised video anomaly detection.
We first propose a multi-scale temporal modeling module, capable of extracting features from segments of varying lengths.
Then, we design a dynamic erasing strategy, which dynamically assesses the completeness of the detected anomalies.
arXiv Detail & Related papers (2023-12-04T09:40:11Z) - Multiscale Video Pretraining for Long-Term Activity Forecasting [67.06864386274736]
Multiscale Video Pretraining learns robust representations for forecasting by learning to predict contextualized representations of future video clips over multiple timescales.
MVP is based on our observation that actions in videos have a multiscale nature, where atomic actions typically occur at a short timescale and more complex actions may span longer timescales.
Our comprehensive experiments across the Ego4D and Epic-Kitchens-55/100 datasets demonstrate that MVP out-performs state-of-the-art methods by significant margins.
arXiv Detail & Related papers (2023-07-24T14:55:15Z) - Self-Supervised Video Representation Learning via Latent Time Navigation [12.721647696921865]
Self-supervised video representation learning aims at maximizing similarity between different temporal segments of one video.
We propose Latent Time Navigation (LTN) to capture fine-grained motions.
Our experimental analysis suggests that learning video representations by LTN consistently improves performance of action classification.
arXiv Detail & Related papers (2023-05-10T20:06:17Z) - Mitigating Representation Bias in Action Recognition: Algorithms and
Benchmarks [76.35271072704384]
Deep learning models perform poorly when applied to videos with rare scenes or objects.
We tackle this problem from two different angles: algorithm and dataset.
We show that the debiased representation can generalize better when transferred to other datasets and tasks.
arXiv Detail & Related papers (2022-09-20T00:30:35Z) - Time Is MattEr: Temporal Self-supervision for Video Transformers [72.42240984211283]
We design simple yet effective self-supervised tasks for video models to learn temporal dynamics better.
Our method learns the temporal order of video frames as extra self-supervision and enforces the randomly shuffled frames to have low-confidence outputs.
Under various video action recognition tasks, we demonstrate the effectiveness of our method and its compatibility with state-of-the-art Video Transformers.
arXiv Detail & Related papers (2022-07-19T04:44:08Z) - Learning Heterogeneous Temporal Patterns of User Preference for Timely
Recommendation [15.930016839929047]
We propose a novel recommender system for timely recommendations, called TimelyRec.
In TimelyRec, a cascade of two encoders captures the temporal patterns of user preference using a proposed attention module for each encoder.
Our experiments on a scenario for item recommendation and the proposed scenario for item-timing recommendation on real-world datasets demonstrate the superiority of TimelyRec.
arXiv Detail & Related papers (2021-04-29T08:37:30Z) - Composable Augmentation Encoding for Video Representation Learning [94.2358972764708]
We focus on contrastive methods for self-supervised video representation learning.
A common paradigm in contrastive learning is to construct positive pairs by sampling different data views for the same instance, with different data instances as negatives.
We propose an 'augmentation aware' contrastive learning framework, where we explicitly provide a sequence of augmentation parameterisations.
We show that our method encodes valuable information about specified spatial or temporal augmentation, and in doing so also achieve state-of-the-art performance on a number of video benchmarks.
arXiv Detail & Related papers (2021-04-01T16:48:53Z) - Self-supervised Temporal Discriminative Learning for Video
Representation Learning [39.43942923911425]
Temporal-discriminative features can hardly be extracted without using an annotated large-scale video action dataset for training.
This paper proposes a novel Video-based Temporal-Discriminative Learning framework in self-supervised manner.
arXiv Detail & Related papers (2020-08-05T13:36:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.