Explicit Uncertainty Modeling for Video Watch Time Prediction
- URL: http://arxiv.org/abs/2504.07575v1
- Date: Thu, 10 Apr 2025 09:19:19 GMT
- Title: Explicit Uncertainty Modeling for Video Watch Time Prediction
- Authors: Shanshan Wu, Shuchang Liu, Shuai Zhang, Xiaoyu Yang, Xiang Li, Lantao Hu, Han Li,
- Abstract summary: In video recommendation, a critical component that determines the system's recommendation accuracy is the watch-time prediction module.<n>One of the key challenges of this problem is the user's watch-time behavior.<n>We propose an adversarial optimization framework that can better exploit the user watch-time behavior.
- Score: 18.999640886056262
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In video recommendation, a critical component that determines the system's recommendation accuracy is the watch-time prediction module, since how long a user watches a video directly reflects personalized preferences. One of the key challenges of this problem is the user's stochastic watch-time behavior. To improve the prediction accuracy for such an uncertain behavior, existing approaches show that one can either reduce the noise through duration bias modeling or formulate a distribution modeling task to capture the uncertainty. However, the uncontrolled uncertainty is not always equally distributed across users and videos, inducing a balancing paradox between the model accuracy and the ability to capture out-of-distribution samples. In practice, we find that the uncertainty of the watch-time prediction model also provides key information about user behavior, which, in turn, could benefit the prediction task itself. Following this notion, we derive an explicit uncertainty modeling strategy for the prediction model and propose an adversarial optimization framework that can better exploit the user watch-time behavior. This framework has been deployed online on an industrial video sharing platform that serves hundreds of millions of daily active users, which obtains a significant increase in users' video watch time by 0.31% through the online A/B test. Furthermore, extended offline experiments on two public datasets verify the effectiveness of the proposed framework across various watch-time prediction backbones.
Related papers
- Generative Regression Based Watch Time Prediction for Short-Video Recommendation [36.95095097454143]
Watch time prediction has emerged as a pivotal task in short video recommendation systems.
Recent studies have attempted to address these issues by converting the continuous watch time estimation into an ordinal regression task.
We propose a novel Generative Regression (GR) framework that reformulates WTP as a sequence generation task.
arXiv Detail & Related papers (2024-12-28T16:48:55Z) - SWaT: Statistical Modeling of Video Watch Time through User Behavior Analysis [15.246875830547056]
We propose a white-box statistical framework that translates various user behavior assumptions in watching (short) videos into statistical watch time models.<n>We test our models extensively on two public datasets, a large-scale offline industrial dataset, and an online A/B test on a short video platform with hundreds of millions of daily-active users.
arXiv Detail & Related papers (2024-08-14T18:19:35Z) - Conditional Quantile Estimation for Uncertain Watch Time in Short-Video Recommendation [2.3166433227657186]
We propose the Conditional Quantile Estimation (CQE) framework to model the entire conditional distribution of watch time.
CQE characterizes the complex watch-time distribution for each user-video pair, providing a flexible and comprehensive approach to understanding user behavior.
In particular, the online deployment of CQE in KuaiShow has led to significant improvements in key evaluation metrics.
arXiv Detail & Related papers (2024-07-17T00:25:35Z) - Counteracting Duration Bias in Video Recommendation via Counterfactual Watch Time [63.844468159126826]
Watch time prediction suffers from duration bias, hindering its ability to reflect users' interests accurately.
Counterfactual Watch Model (CWM) is proposed, revealing that CWT equals the time users get the maximum benefit from video recommender systems.
arXiv Detail & Related papers (2024-06-12T06:55:35Z) - Uncertainty-boosted Robust Video Activity Anticipation [72.14155465769201]
Video activity anticipation aims to predict what will happen in the future, embracing a broad application prospect ranging from robot vision to autonomous driving.
Despite the recent progress, the data uncertainty issue, reflected as the content evolution process and dynamic correlation in event labels, has been somehow ignored.
We propose an uncertainty-boosted robust video activity anticipation framework, which generates uncertainty values to indicate the credibility of the anticipation results.
arXiv Detail & Related papers (2024-04-29T12:31:38Z) - Fine-grained Forecasting Models Via Gaussian Process Blurring Effect [6.472434306724611]
Time series forecasting is a challenging task due to the existence of complex and dynamic temporal dependencies.
Using more training data is one way to improve the accuracy, but this source is often limited.
We are building on successful denoising approaches for image generation by advocating for an end-to-end forecasting and denoising paradigm.
arXiv Detail & Related papers (2023-12-21T20:25:16Z) - Streaming Motion Forecasting for Autonomous Driving [71.7468645504988]
We introduce a benchmark that queries future trajectories on streaming data and we refer to it as "streaming forecasting"
Our benchmark inherently captures the disappearance and re-appearance of agents, which is a safety-critical problem yet overlooked by snapshot-based benchmarks.
We propose a plug-and-play meta-algorithm called "Predictive Streamer" that can adapt any snapshot-based forecaster into a streaming forecaster.
arXiv Detail & Related papers (2023-10-02T17:13:16Z) - Toward Reliable Human Pose Forecasting with Uncertainty [51.628234388046195]
We develop an open-source library for human pose forecasting, including multiple models, supporting several datasets.
We devise two types of uncertainty in the problem to increase performance and convey better trust.
arXiv Detail & Related papers (2023-04-13T17:56:08Z) - Improving Adaptive Conformal Prediction Using Self-Supervised Learning [72.2614468437919]
We train an auxiliary model with a self-supervised pretext task on top of an existing predictive model and use the self-supervised error as an additional feature to estimate nonconformity scores.
We empirically demonstrate the benefit of the additional information using both synthetic and real data on the efficiency (width), deficit, and excess of conformal prediction intervals.
arXiv Detail & Related papers (2023-02-23T18:57:14Z) - Inductive Attention for Video Action Anticipation [16.240254363118016]
We propose an inductive attention model, dubbed IAM, which leverages the current prior predictions as the query to infer future action.
Our method consistently outperforms the state-of-the-art anticipation models on multiple large-scale egocentric video datasets.
arXiv Detail & Related papers (2022-12-17T09:51:17Z) - Uncertainty-Aware Time-to-Event Prediction using Deep Kernel Accelerated
Failure Time Models [11.171712535005357]
We propose Deep Kernel Accelerated Failure Time models for the time-to-event prediction task.
Our model shows better point estimate performance than recurrent neural network based baselines in experiments on two real-world datasets.
arXiv Detail & Related papers (2021-07-26T14:55:02Z) - Private Prediction Sets [72.75711776601973]
Machine learning systems need reliable uncertainty quantification and protection of individuals' privacy.
We present a framework that treats these two desiderata jointly.
We evaluate the method on large-scale computer vision datasets.
arXiv Detail & Related papers (2021-02-11T18:59:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.