論文の概要: Large Language Model Unlearning via Embedding-Corrupted Prompts
- arxiv url: http://arxiv.org/abs/2406.07933v2
- Date: Thu, 31 Oct 2024 07:36:39 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-01 23:41:19.477549
- Title: Large Language Model Unlearning via Embedding-Corrupted Prompts
- Title(参考訳): 埋め込み型プロンプトによる大規模言語モデル学習
- Authors: Chris Yuhao Liu, Yaxuan Wang, Jeffrey Flanigan, Yang Liu,
- Abstract要約: 大規模言語モデルのための軽量なアンラーニングフレームワークである textbfEmbedding-COrrupted (ECO) Prompts を提案する。
推論中に未学習の状態を識別し、忘れるプロンプトを保護するためにプロンプト分類器を用いて強制する。
その結果, 学習対象を満足させるだけでなく, 忘れることを意図したデータに基づいて訓練されたことのないモデルから得られる出力を, より正確に近似できることがわかった。
- 参考スコア(独自算出の注目度): 10.889859281637406
- License:
- Abstract: Large language models (LLMs) have advanced to encompass extensive knowledge across diverse domains. Yet controlling what a large language model should not know is important for ensuring alignment and thus safe use. However, accurately and efficiently unlearning knowledge from an LLM remains challenging due to the potential collateral damage caused by the fuzzy boundary between retention and forgetting, and the large computational requirements for optimization across state-of-the-art models with hundreds of billions of parameters. In this work, we present \textbf{Embedding-COrrupted (ECO) Prompts}, a lightweight unlearning framework for large language models to address both the challenges of knowledge entanglement and unlearning efficiency. Instead of relying on the LLM itself to unlearn, we enforce an unlearned state during inference by employing a prompt classifier to identify and safeguard prompts to forget. We learn corruptions added to prompt embeddings via zeroth order optimization toward the unlearning objective offline and corrupt prompts flagged by the classifier during inference. We find that these embedding-corrupted prompts not only lead to desirable outputs that satisfy the unlearning objective but also closely approximate the output from a model that has never been trained on the data intended for forgetting. Through extensive experiments on unlearning, we demonstrate the superiority of our method in achieving promising unlearning at \textit{nearly zero side effects} in general domains and domains closely related to the unlearned ones. Additionally, we highlight the scalability of our method to 100 LLMs, ranging from 0.5B to 236B parameters, incurring no additional cost as the number of parameters increases. We have made our code publicly available at \url{https://github.com/chrisliu298/llm-unlearn-eco}.
- Abstract(参考訳): 大規模言語モデル(LLM)は、様々な領域にわたる広範な知識を網羅するために進歩してきた。
しかし、大規模な言語モデルが知るべきでないものを制御することは、アライメントの確保と安全な使用のために重要である。
しかし, 保持と忘れのファジィ境界による副次的損傷や, 数十億のパラメータを持つ最先端モデルにまたがる最適化の膨大な計算要求により, LLMからの知識を正確かつ効率的に学習することは依然として困難である。
本研究では,知識の絡み合いと学習効率の両面での課題に対処するために,大規模言語モデルのための軽量なアンラーニングフレームワークである「textbf{Embedding-COrrupted (ECO) Prompts}」を提案する。
LLM自体を非学習に頼らず、私たちは推論中に未学習の状態を強制し、プロンプト分類器を使用して忘れるべきプロンプトを特定し、保護する。
推論中に分類器がフラグ付けした非学習対象のオフラインおよび不正なプロンプトに対して、ゼロ順最適化による埋め込みを促すために、汚職が加わったことを学習する。
その結果, 学習対象を満足させるだけでなく, 忘れることを意図したデータに基づいて訓練されたことのないモデルから得られる出力を, より正確に近似できることがわかった。
未学習に関する広範囲な実験を通じて,本手法の優位性を実証し,未学習領域と密接な関係を持つ一般領域や領域において,有望な未学習を実現する。
さらに,本手法のスケーラビリティを0.5Bから236Bまでの100 LLMに強調し,パラメータ数が増加するにつれて追加コストは発生しないことを示した。
当社のコードは、 \url{https://github.com/chrisliu298/llm-unlearn-eco}で公開しています。
関連論文リスト
- A Closer Look at Machine Unlearning for Large Language Models [46.245404272612795]
大型言語モデル(LLM)は機密または著作権のあるコンテンツを記憶し、プライバシーと法的懸念を高める。
LLMの機械学習におけるいくつかの問題について議論し、可能なアプローチについての洞察を提供する。
論文 参考訳(メタデータ) (2024-10-10T16:56:05Z) - CodeUnlearn: Amortized Zero-Shot Machine Unlearning in Language Models Using Discrete Concept [5.345828824625758]
コードブック機能とスパースオートエンコーダ(SAEs)を用いた新しいアンラーニング手法を提案する。
ボトルネックを利用して、アクティベーション空間を分解し、情報の流れを規制することにより、モデルの性能を無関係なデータに保ちながら、ターゲットとなる情報を効率的に解き放つ。
論文 参考訳(メタデータ) (2024-10-08T10:26:22Z) - Towards Robust Knowledge Unlearning: An Adversarial Framework for Assessing and Improving Unlearning Robustness in Large Language Models [19.015202590038996]
我々は、未学習モデルを攻撃する動的かつ自動化されたフレームワークであるDynamic Unlearning Attack (DUA)を設計する。
学習過程の堅牢性を効果的に向上する普遍的な枠組みであるLatent Adrial Unlearning (LAU)を提案する。
LAUは学習効率を53.5%以上改善し、近隣の知識の11.6%以下に減らし、モデルの一般的な能力にはほとんど影響を与えないことを示した。
論文 参考訳(メタデータ) (2024-08-20T09:36:04Z) - Soft Prompting for Unlearning in Large Language Models [11.504012974208466]
この研究は、データ保護規制を動機とした大規模言語モデルのための機械学習の研究に焦点をあてる。
我々はtextbfUntextbflearning (SPUL) のための textbfSoft textbfPrompting フレームワークを提案する。
本研究では,提案手法の厳密な評価を行い,SPULが実用性と忘れとのトレードオフを大幅に改善できることを示す。
論文 参考訳(メタデータ) (2024-06-17T19:11:40Z) - Unlearning with Control: Assessing Real-world Utility for Large Language Model Unlearning [97.2995389188179]
最近の研究は、勾配上昇(GA)を通した大規模言語モデル(LLM)の未学習にアプローチし始めている。
その単純さと効率性にもかかわらず、我々はGAベースの手法が過剰な未学習の傾向に直面することを示唆している。
過剰な未学習の度合いを制御できるいくつかの制御手法を提案する。
論文 参考訳(メタデータ) (2024-06-13T14:41:00Z) - Machine Unlearning in Large Language Models [0.7864304771129751]
本稿では,大規模言語モデル(LLM)を倫理,プライバシ,安全基準と整合させる手法を提案する。
本研究の目的は,LLMにおける学習情報を選択的に消去・修正することであり,有害な応答や著作権のあるコンテンツを対象としている。
論文 参考訳(メタデータ) (2024-05-24T02:12:51Z) - Offset Unlearning for Large Language Models [49.851093293780615]
アンラーニングは、問題のあるトレーニングデータに影響された大規模言語モデルの潜在的な治療法として浮上した。
ブラックボックスLLMのためのオフセットアンラーニングフレームワークである$delta$-unlearningを提案する。
実験によると、$delta$-unlearningは、一般的なアウトオブスコープタスクにおいて、同じような、あるいはより強力なパフォーマンスを維持しながら、ターゲットデータを効果的に解放することができる。
論文 参考訳(メタデータ) (2024-04-17T03:39:51Z) - The Frontier of Data Erasure: Machine Unlearning for Large Language Models [56.26002631481726]
大規模言語モデル(LLM)はAIの進歩の基礎となっている。
LLMは機密情報、偏見情報、著作権情報を記憶し、広めることによってリスクを生じさせる。
機械学習は、これらの懸念を軽減するための最先端のソリューションとして現れます。
論文 参考訳(メタデータ) (2024-03-23T09:26:15Z) - Supervised Knowledge Makes Large Language Models Better In-context Learners [94.89301696512776]
大規模言語モデル(LLM)は、素早い工学を通して、文脈内学習能力の出現を示す。
自然言語理解と質問応答におけるLLMの一般化性と事実性の向上という課題は、まだ未解決のままである。
本研究では, LLM の信頼性を高める枠組みを提案する。1) 分布外データの一般化,2) 差別モデルによる LLM のメリットの解明,3) 生成タスクにおける幻覚の最小化。
論文 参考訳(メタデータ) (2023-12-26T07:24:46Z) - Unlearn What You Want to Forget: Efficient Unlearning for LLMs [92.51670143929056]
大規模言語モデル(LLM)は、幅広いテキストデータを事前学習し記憶することで大きな進歩を遂げた。
このプロセスはプライバシー問題やデータ保護規則違反に悩まされる可能性がある。
データ削除後のモデル全体を再トレーニングすることなく、LLMを効率的に更新できる効率的なアンラーニングフレームワークを提案する。
論文 参考訳(メタデータ) (2023-10-31T03:35:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。