論文の概要: Erasing Without Remembering: Safeguarding Knowledge Forgetting in Large Language Models
- arxiv url: http://arxiv.org/abs/2502.19982v1
- Date: Thu, 27 Feb 2025 11:03:33 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-28 15:15:46.904241
- Title: Erasing Without Remembering: Safeguarding Knowledge Forgetting in Large Language Models
- Title(参考訳): 忘れずに消し去る - 大規模言語モデルにおける知識獲得の保護
- Authors: Huazheng Wang, Yongcheng Jing, Haifeng Sun, Yingjie Wang, Jingyu Wang, Jianxin Liao, Dacheng Tao,
- Abstract要約: 大規模言語モデル(LLM)におけるモデル非学習の保護方法について研究する。
私たちの目標は、未学習のモデルが対象とする知識の関連記憶をリコールすることを防止することです。
LLMアンラーニングの保護のための一般化能力を大幅に向上させる摂動に基づくPERMUを提案する。
- 参考スコア(独自算出の注目度): 70.78205685001168
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we explore machine unlearning from a novel dimension, by studying how to safeguard model unlearning in large language models (LLMs). Our goal is to prevent unlearned models from recalling any related memory of the targeted knowledge.We begin by uncovering a surprisingly simple yet overlooked fact: existing methods typically erase only the exact expressions of the targeted knowledge, leaving paraphrased or related information intact. To rigorously measure such oversights, we introduce UGBench, the first benchmark tailored for evaluating the generalisation performance across 13 state-of-the-art methods.UGBench reveals that unlearned models can still recall paraphrased answers and retain target facts in intermediate layers. To address this, we propose PERMU, a perturbation-based method that significantly enhances the generalisation capabilities for safeguarding LLM unlearning.Experiments demonstrate that PERMU delivers up to a 50.13% improvement in unlearning while maintaining a 43.53% boost in robust generalisation. Our code can be found in https://github.com/MaybeLizzy/UGBench.
- Abstract(参考訳): 本稿では,大規模言語モデル(LLM)におけるモデル非学習の保護方法を検討することによって,新しい次元からの機械学習を探索する。
私たちのゴールは、未学習のモデルが対象の知識の関連記憶をリコールすることを防ぐことです。
このような監視を厳格に評価するために、13の最先端手法にまたがる一般化性能を評価するための最初のベンチマークであるUGBenchを導入する。
そこで我々は, LLM のアンラーニングを保護するための一般化能力を大幅に向上させる摂動型手法PERMUを提案する。実験により, PERMU は堅牢な一般化において 43.53% の高速化を維持しつつ, アンラーニングを最大50.13%向上させることを示した。
私たちのコードはhttps://github.com/MaybeLizzy/UGBench.comにある。
関連論文リスト
- Align-then-Unlearn: Embedding Alignment for LLM Unlearning [41.94295877935867]
Unlearningは、個人情報や著作権のあるコンテンツなど、訓練されたモデルから特定のデータを選択的に取り除こうとしている。
セマンティック埋め込み空間においてアンラーニングを行う新しいフレームワークであるAlign-then-Unlearnを提案する。
論文 参考訳(メタデータ) (2025-06-16T07:48:01Z) - ReLearn: Unlearning via Learning for Large Language Models [64.2802606302194]
本研究では、効果的なアンラーニングのためのデータ拡張および微調整パイプラインであるReLearnを提案する。
このフレームワークでは、知識レベルの保存を測定するために、知識獲得率(KFR)と知識保持率(KRR)を導入している。
実験の結果,ReLearnは高品質な出力を保ちながら,目標とするリセットを実現することができた。
論文 参考訳(メタデータ) (2025-02-16T16:31:00Z) - Does Unlearning Truly Unlearn? A Black Box Evaluation of LLM Unlearning Methods [1.9799527196428242]
大規模言語モデルアンラーニングは、LLMが悪意ある目的のために使用するのを防ぐために学んだ有害な情報を除去することを目的としている。
アンラーニングが一般的なモデル能力に顕著な影響を与えていることを示す。
簡単な方法で5ショットのプロンプトやリフレーズを行うことで、未学習ベンチマークの精度が10倍以上に向上する可能性があることを示す。
論文 参考訳(メタデータ) (2024-11-18T22:31:17Z) - Catastrophic Failure of LLM Unlearning via Quantization [36.524827594501495]
未学習のモデルに量子化を適用することで、「忘れられた」情報を復元できることを示す。
実用性制約のある未学習の手法では、未学習モデルは、意図された忘れられた知識の21%を完全な精度で保持する。
論文 参考訳(メタデータ) (2024-10-21T19:28:37Z) - Mitigating Memorization In Language Models [37.899013074095336]
言語モデル(LM)は情報を「記憶」し、トレーニングデータをその重みにエンコードすることで、推論時クエリがそのデータの冗長な復活につながる。
本稿では,メモリ化緩和手法の高速化と評価を目的とした,小型で計算効率のよいLMのスイートであるTinyMemを紹介する。
特に,提案した未学習手法である BalancedSubnet は,目標タスクの性能を保ちながら,記憶情報を削除する他の緩和手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2024-10-03T02:53:51Z) - Learn while Unlearn: An Iterative Unlearning Framework for Generative Language Models [52.03511469562013]
3つのコアコンポーネントで構成されるICU(Iterative Contrastive Unlearning)フレームワークを紹介する。
知識未学習誘導モジュールは、未学習の損失を使用して、特定の知識を除去するためにターゲットとする。
Contrastive Learning Enhancementモジュールは、純粋な未学習の目標に対してモデルの表現力を保持する。
イテレーティブ・アンラーニング・リファインメントモジュールは、進行中の評価と更新を通じて、アンラーニングプロセスを動的に調整する。
論文 参考訳(メタデータ) (2024-07-25T07:09:35Z) - MUSE: Machine Unlearning Six-Way Evaluation for Language Models [109.76505405962783]
言語モデル(LM)は、プライベートおよび著作権のあるコンテンツを含む大量のテキストデータに基づいて訓練される。
総合的な機械学習評価ベンチマークであるMUSEを提案する。
人気のある8つのアンラーニングアルゴリズムがハリー・ポッターの本やニュース記事をいかに効果的に解き放つかをベンチマークする。
論文 参考訳(メタデータ) (2024-07-08T23:47:29Z) - To Forget or Not? Towards Practical Knowledge Unlearning for Large Language Models [39.39428450239399]
大規模な言語モデル(LLM)は、個人プライバシー情報や著作権資料などの機密データを必然的に保持する。
知識未学習の最近の進歩は、特定の知識を消去するためにLLMパラメータを更新する。
未学習プロセスが必然的に本質的な知識を消去するかどうかを評価するために KnowUnDo を導入する。
論文 参考訳(メタデータ) (2024-07-02T03:34:16Z) - Large Language Model Unlearning via Embedding-Corrupted Prompts [10.889859281637406]
大規模言語モデルのための軽量なアンラーニングフレームワークである textbfEmbedding-COrrupted (ECO) Prompts を提案する。
推論中に未学習の状態を識別し、忘れるプロンプトを保護するためにプロンプト分類器を用いて強制する。
その結果, 学習対象を満足させるだけでなく, 忘れることを意図したデータに基づいて訓練されたことのないモデルから得られる出力を, より正確に近似できることがわかった。
論文 参考訳(メタデータ) (2024-06-12T06:56:20Z) - Simple linear attention language models balance the recall-throughput tradeoff [60.06020449520365]
線形およびすべり窓の注意を結合したシンプルなアーキテクチャであるBASEDを提案する。
我々は、最大1.3bパラメータの言語モデルをトレーニングし、BASEDがパープレキシティにおいて最強のサブクワッドラティックモデルと一致し、実世界のリコール集約タスクにおいて6.22の精度ポイントでそれらのモデルを上回っていることを示す。
論文 参考訳(メタデータ) (2024-02-28T19:28:27Z) - An Information Theoretic Approach to Machine Unlearning [43.423418819707784]
AIやデータ規則に従うためには、トレーニングされた機械学習モデルからプライベートまたは著作権のある情報を忘れる必要性がますます高まっている。
この研究では、ゼロショットのアンラーニングシナリオに対処し、未学習のアルゴリズムは、トレーニングされたモデルと忘れられるデータだけが与えられたデータを削除できなければならない。
モデルの幾何に基づいて、単純だが原則化されたゼロショットアンラーニング法を導出する。
論文 参考訳(メタデータ) (2024-02-02T13:33:30Z) - Memory Consistency Guided Divide-and-Conquer Learning for Generalized
Category Discovery [56.172872410834664]
一般カテゴリー発見(GCD)は、半教師付き学習のより現実的で挑戦的な設定に対処することを目的としている。
メモリ一貫性を誘導する分枝・分枝学習フレームワーク(MCDL)を提案する。
本手法は,画像認識の目に見えるクラスと見えないクラスの両方において,最先端のモデルよりも優れた性能を示す。
論文 参考訳(メタデータ) (2024-01-24T09:39:45Z) - Preserving Knowledge Invariance: Rethinking Robustness Evaluation of Open Information Extraction [49.15931834209624]
実世界におけるオープン情報抽出モデルの評価をシミュレートする最初のベンチマークを示す。
我々は、それぞれの例が知識不変のcliqueである大規模なテストベッドを設計し、注釈付けする。
さらにロバスト性計量を解明することにより、その性能が全体の傾きに対して一貫して正確であるならば、モデルはロバストであると判断される。
論文 参考訳(メタデータ) (2023-05-23T12:05:09Z) - Generative Meta-Learning for Zero-Shot Relation Triplet Extraction [20.556880137419064]
ゼロショット関係トリプレット抽出 (ZeroRTE) は、未知の関係型を含むテキストから関係トリプレットを抽出することを目的としている。
既存のアプローチは一般的に、事前訓練された言語モデルに埋め込まれた知識を活用して一般化プロセスを達成する。
本稿では,メタ学習の学習能力を利用して生成モデルの一般化能力を向上する生成メタ学習フレームワークを提案する。
論文 参考訳(メタデータ) (2023-05-03T06:34:39Z) - A Memory Transformer Network for Incremental Learning [64.0410375349852]
本研究では,モデルが学習する時間とともに,新しいデータクラスが観察される学習環境であるクラスインクリメンタルラーニングについて検討する。
素直な問題定式化にもかかわらず、クラス増分学習への分類モデルの素直な適用は、これまで見られたクラスの「破滅的な忘れ込み」をもたらす。
これは、過去のデータのサブセットをメモリバンクに保存し、将来のタスクをトレーニングする際の忘れの防止にそれを活用することで、破滅的な忘れの問題を克服するものだ。
論文 参考訳(メタデータ) (2022-10-10T08:27:28Z) - Improving Contrastive Learning on Imbalanced Seed Data via Open-World
Sampling [96.8742582581744]
我々は、Model-Aware K-center (MAK)と呼ばれるオープンワールドなラベルなしデータサンプリングフレームワークを提案する。
MAKは、尾性、近接性、多様性の3つの単純な原則に従う。
我々はMAKが学習した機能の全体的な表現品質とクラスバランス性の両方を継続的に改善できることを実証した。
論文 参考訳(メタデータ) (2021-11-01T15:09:41Z) - Layer-wise Characterization of Latent Information Leakage in Federated
Learning [9.397152006395174]
フェデレートされた学習を通じてディープニューラルネットワークをトレーニングすることで、クライアントは元のデータではなく、データに基づいてトレーニングされたモデルのみを共有することができる。
従来の研究は、クライアントのプライベート情報が、メインの学習タスクとは無関係に、モデルの勾配から発見できることを実証している。
共有された更新モデルや勾配を通じて、プライベート情報の漏洩を定量化するための公式なアプローチはまだ存在しない。
論文 参考訳(メタデータ) (2020-10-17T10:49:14Z) - GRAFFL: Gradient-free Federated Learning of a Bayesian Generative Model [8.87104231451079]
本稿では、GRAFFLと呼ばれる、最初の勾配のない連邦学習フレームワークを提案する。
参加する各機関から得られた暗黙の情報を用いて、パラメータの後方分布を学習する。
本稿では,GRAFFLに基づくベイズ混合モデルを提案する。
論文 参考訳(メタデータ) (2020-08-29T07:19:44Z) - Deep F-measure Maximization for End-to-End Speech Understanding [52.36496114728355]
本稿では,F測度に対する微分可能な近似法を提案し,標準バックプロパゲーションを用いてネットワークをトレーニングする。
我々は、アダルト、コミュニティ、犯罪の2つの標準フェアネスデータセットの実験を行い、ATISデータセットの音声・インテリジェンス検出と音声・COCOデータセットの音声・イメージ概念分類を行った。
これらの4つのタスクのすべてにおいて、F測定は、クロスエントロピー損失関数で訓練されたモデルと比較して、最大8%の絶対的な絶対的な改善を含む、マイクロF1スコアの改善をもたらす。
論文 参考訳(メタデータ) (2020-08-08T03:02:27Z) - REALM: Retrieval-Augmented Language Model Pre-Training [37.3178586179607]
言語モデルの事前学習を潜伏知識検索システムで強化し,ウィキペディアのような大規模コーパスから文書を検索し,出席できるようにする。
本研究では,このような知識検索を教師なしで事前学習する方法を初めて示す。
オープンドメイン質問回答(Open-QA)の課題を微調整し,検索型言語モデル事前学習(REALM)の有効性を実証する。
論文 参考訳(メタデータ) (2020-02-10T18:40:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。