論文の概要: US College Net Price Prediction Comparing ML Regression Models
- arxiv url: http://arxiv.org/abs/2406.08071v1
- Date: Wed, 12 Jun 2024 10:41:14 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-13 17:24:58.048032
- Title: US College Net Price Prediction Comparing ML Regression Models
- Title(参考訳): ML回帰モデルとの比較による米国大学のネット価格予測
- Authors: Zalak Patel, Ayushi Porwal, Kajal Bhandare, Jongwook Woo,
- Abstract要約: 本稿では,政府のウェブサイトに公開されているデータからUS College Scorecardのデータを分析することに焦点を当てる。
我々の目標は、4つの機械学習回帰モデルを用いて予測モデルを構築し、各大学における等価ネットコストを予測することである。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper will illustrate the usage of Machine Learning algorithms on US College Scorecard datasets. For this paper, we will use our knowledge, research, and development of a predictive model to compare the results of all the models and predict the public and private net prices. This paper focuses on analyzing US College Scorecard data from data published on government websites. Our goal is to use four machine learning regression models to develop a predictive model to forecast the equitable net cost for every college, encompassing both public institutions and private, whether for-profit or nonprofit.
- Abstract(参考訳): 本稿では,US College Scorecardデータセットにおける機械学習アルゴリズムの利用について述べる。
本稿では,すべてのモデルの結果を比較し,パブリックおよびプライベートネット価格を予測するために,予測モデルに関する知識,研究,開発の活用について述べる。
本稿では,政府のウェブサイトに公開されているデータからUS College Scorecardのデータを分析することに焦点を当てる。
我々の目標は、4つの機械学習レグレッションモデルを使用して、各カレッジの平等な純コストを予測する予測モデルを開発することです。
関連論文リスト
- Attribute-to-Delete: Machine Unlearning via Datamodel Matching [65.13151619119782]
機械学習 -- 事前訓練された機械学習モデルで、小さな"ターゲットセット"トレーニングデータを効率的に削除する -- は、最近関心を集めている。
最近の研究では、機械学習技術はこのような困難な環境では耐えられないことが示されている。
論文 参考訳(メタデータ) (2024-10-30T17:20:10Z) - Learning Augmentation Policies from A Model Zoo for Time Series Forecasting [58.66211334969299]
本稿では,強化学習に基づく学習可能なデータ拡張手法であるAutoTSAugを紹介する。
限界サンプルを学習可能なポリシーで強化することにより、AutoTSAugは予測性能を大幅に改善する。
論文 参考訳(メタデータ) (2024-09-10T07:34:19Z) - A Fair Post-Processing Method based on the MADD Metric for Predictive Student Models [1.055551340663609]
予測的学生モデルにおけるアルゴリズム的公正性を評価するために,新しい尺度が開発された。
本稿では,適切な予測モデルの結果の正確性を保ちつつ,公平性を向上することを目的とした後処理手法を提案する。
我々は、シミュレーションと実世界の教育データを用いて、オンラインコースにおける学生の成功を予測するタスクについて実験を行った。
論文 参考訳(メタデータ) (2024-07-07T14:53:41Z) - A Study on Stock Forecasting Using Deep Learning and Statistical Models [3.437407981636465]
本稿では、株価予測のための多くのディープラーニングアルゴリズムを概説し、トレーニングとテストにs&p500インデックスデータを用いた。
自動回帰積分移動平均モデル、リカレントニューラルネットワークモデル、長い短期モデル、畳み込みニューラルネットワークモデル、完全な畳み込みニューラルネットワークモデルなど、さまざまなモデルについて議論する。
論文 参考訳(メタデータ) (2024-02-08T16:45:01Z) - ASPEST: Bridging the Gap Between Active Learning and Selective
Prediction [56.001808843574395]
選択予測は、不確実な場合の予測を棄却する信頼性のあるモデルを学ぶことを目的としている。
アクティブラーニングは、最も有意義な例を問うことで、ラベリングの全体、すなわち人間の依存度を下げることを目的としている。
本研究では,移動対象領域からより情報のあるサンプルを検索することを目的とした,新たな学習パラダイムである能動的選択予測を導入する。
論文 参考訳(メタデータ) (2023-04-07T23:51:07Z) - Fallen Angel Bonds Investment and Bankruptcy Predictions Using Manual
Models and Automated Machine Learning [0.0]
私たちは、倒産を予測できる最適な機械学習モデルを作成しました。
モデルは、当初のデータセット上での破産をうまく予測しなかった。
しかし、過剰サンプリングされた機能選択データセットは、非常によく機能しました。
論文 参考訳(メタデータ) (2022-12-07T04:39:49Z) - Synthetic Model Combination: An Instance-wise Approach to Unsupervised
Ensemble Learning [92.89846887298852]
ラベル付きデータのトレーニングセットから学ぶ機会のない、新しいテストデータに対する予測を検討する。
専門家モデルのセットと予測へのアクセスと、トレーニングに使用するデータセットに関する制限された情報を提供すること。
論文 参考訳(メタデータ) (2022-10-11T10:20:31Z) - Forecasting COVID-19 spreading trough an ensemble of classical and
machine learning models: Spain's case study [0.0]
我々は、新型コロナウイルスのパンデミックの近い将来の進化を予測するために、人口モデルと機械学習モデルのアンサンブルの適用性を評価する。
オープンかつパブリックなデータセットのみに依存しており、発生率、ワクチン接種、人間の移動性、気象データに頼っています。
論文 参考訳(メタデータ) (2022-07-12T08:16:44Z) - Datamodels: Predicting Predictions from Training Data [86.66720175866415]
本稿では,モデルクラスの振る舞いを学習データの観点から分析するための概念的枠組みであるデータモデリングについて述べる。
単純な線形データモデルであっても、モデル出力をうまく予測できることが示される。
論文 参考訳(メタデータ) (2022-02-01T18:15:24Z) - Machine Learning Classification Methods and Portfolio Allocation: An
Examination of Market Efficiency [3.3343612552681945]
我々は,OOS(Out-of-sample)予測可能性を通じて市場効率を評価する新しい枠組みを設計する。
我々は、資産価格問題を機械学習の分類問題とみなし、返却状態を予測するための分類モデルを構築した。
予測に基づくポートフォリオは、OOS経済の大幅な伸びで市場を圧倒した。
論文 参考訳(メタデータ) (2021-08-04T20:48:27Z) - Knowledge-Enriched Distributional Model Inversion Attacks [49.43828150561947]
モデルインバージョン(MI)攻撃は、モデルパラメータからトレーニングデータを再構成することを目的としている。
本稿では,パブリックデータからプライベートモデルに対する攻撃を行うのに役立つ知識を抽出する,新しい反転型GANを提案する。
実験の結果,これらの手法を組み合わせることで,最先端MI攻撃の成功率を150%向上させることができることがわかった。
論文 参考訳(メタデータ) (2020-10-08T16:20:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。