論文の概要: Languages Transferred Within the Encoder: On Representation Transfer in Zero-Shot Multilingual Translation
- arxiv url: http://arxiv.org/abs/2406.08092v1
- Date: Wed, 12 Jun 2024 11:16:30 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-13 17:15:13.648099
- Title: Languages Transferred Within the Encoder: On Representation Transfer in Zero-Shot Multilingual Translation
- Title(参考訳): エンコーダ内で伝達される言語:ゼロショット多言語翻訳における表現伝達について
- Authors: Zhi Qu, Chenchen Ding, Taro Watanabe,
- Abstract要約: 多言語調査における基本尺度の欠如に対処するため,自己翻訳文であるアイデンティティペアを導入する。
エンコーダは、言語に依存しない状態ではなく、対象言語の表現部分空間にソース言語を転送することを示した。
本研究では,1)エンコーダにおける低ランク言語固有の埋め込みと,2)デコーダにおける表現の言語固有のコントラスト学習の2つの手法を提案する。
- 参考スコア(独自算出の注目度): 16.368747052909214
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Understanding representation transfer in multilingual neural machine translation can reveal the representational issue causing the zero-shot translation deficiency. In this work, we introduce the identity pair, a sentence translated into itself, to address the lack of the base measure in multilingual investigations, as the identity pair represents the optimal state of representation among any language transfers. In our analysis, we demonstrate that the encoder transfers the source language to the representational subspace of the target language instead of the language-agnostic state. Thus, the zero-shot translation deficiency arises because representations are entangled with other languages and are not transferred effectively to the target language. Based on our findings, we propose two methods: 1) low-rank language-specific embedding at the encoder, and 2) language-specific contrastive learning of the representation at the decoder. The experimental results on Europarl-15, TED-19, and OPUS-100 datasets show that our methods substantially enhance the performance of zero-shot translations by improving language transfer capacity, thereby providing practical evidence to support our conclusions.
- Abstract(参考訳): 多言語ニューラルマシン翻訳における表現伝達を理解することは、ゼロショット翻訳不足の原因となる表現的問題を明らかにすることができる。
本研究は,言語伝達における表現の最適な状態を表すため,多言語調査における基本尺度の欠如に対処するために,それ自身に翻訳された文であるアイデンティティペアを導入する。
解析では,エンコーダが言語に依存しない状態ではなく,対象言語の表現部分空間にソース言語を転送することを示した。
したがって、ゼロショット翻訳不足は、表現が他の言語と絡み合っており、ターゲット言語に効果的に転送されないために生じる。
そこで本研究では,2つの方法を提案する。
1)エンコーダにおける低ランク言語固有の埋め込み
2)デコーダにおける表現の言語固有のコントラスト学習。
Europarl-15,TED-19,OPUS-100データセットを用いた実験結果から,言語翻訳能力を向上させることにより,ゼロショット翻訳の性能を大幅に向上させることができた。
関連論文リスト
- Unlikelihood Tuning on Negative Samples Amazingly Improves Zero-Shot
Translation [79.96416609433724]
Zero-shot Translation (ZST)は、トレーニングデータにおいて、目に見えない言語ペア間の翻訳を目的としている。
推論中にゼロショット言語マッピングをガイドする一般的な方法は、ソースとターゲット言語IDを意図的に挿入することである。
近年の研究では、言語IDが時折ZSTタスクのナビゲートに失敗し、ターゲット外問題に悩まされることが示されている。
論文 参考訳(メタデータ) (2023-09-28T17:02:36Z) - Adapting to Non-Centered Languages for Zero-shot Multilingual
Translation [12.487990897680422]
我々は,非中心言語に適応して,シンプルで軽量で効果的な言語特化モデリング手法を提案する。
IWSLT17, Europarl, TED Talk, OPUS-100 データセットの Transformer を用いた実験により, 本手法が非中心データ条件に容易に適合できることが判明した。
論文 参考訳(メタデータ) (2022-09-09T06:34:12Z) - Informative Language Representation Learning for Massively Multilingual
Neural Machine Translation [47.19129812325682]
多言語ニューラルマシン翻訳モデルでは、通常、人工言語トークンを使用して、所望のターゲット言語への翻訳をガイドする。
近年の研究では、先行する言語トークンは、多言語ニューラルマシン翻訳モデルから正しい翻訳方向へのナビゲートに失敗することがある。
本稿では,言語埋め込み型エンボディメントと言語認識型マルチヘッドアテンションという2つの手法を提案する。
論文 参考訳(メタデータ) (2022-09-04T04:27:17Z) - Zero-Shot Cross-lingual Semantic Parsing [56.95036511882921]
7つのテスト言語に対する並列データを持たないゼロショット問題として,言語間セマンティックパーシングについて検討した。
英文論理形式ペアデータのみを用いて解析知識を付加言語に転送するマルチタスクエンコーダデコーダモデルを提案する。
このシステムは、ゼロショット解析を潜時空間アライメント問題としてフレーム化し、事前訓練されたモデルを改善し、最小のクロスリンガル転送ペナルティで論理形式を生成することができる。
論文 参考訳(メタデータ) (2021-04-15T16:08:43Z) - Improving Zero-Shot Translation by Disentangling Positional Information [24.02434897109097]
言語固有の表現を引き起こす主な要因は、入力トークンに対する位置対応であることを示す。
指示方向の品質を維持しながら、ゼロショット翻訳で最大18.5 BLEUポイントを得る。
論文 参考訳(メタデータ) (2020-12-30T12:20:41Z) - From Zero to Hero: On the Limitations of Zero-Shot Cross-Lingual
Transfer with Multilingual Transformers [62.637055980148816]
言語モデリングの目的によって事前訓練された多言語トランスフォーマーは、NLPの事実上のデフォルト転送パラダイムとなっている。
膨大な多言語変換器による言語間変換は,リソースリーンシナリオや遠方言語では著しく効果が低いことを示す。
論文 参考訳(メタデータ) (2020-05-01T22:04:58Z) - Improving Massively Multilingual Neural Machine Translation and
Zero-Shot Translation [81.7786241489002]
ニューラルネットワーク翻訳(NMT)の多言語モデルは理論的には魅力的であるが、しばしばバイリンガルモデルに劣る。
我々は,多言語NMTが言語ペアをサポートするためにより強力なモデリング能力を必要とすることを論じる。
未知のトレーニング言語ペアの翻訳を強制するために,ランダムなオンライン翻訳を提案する。
論文 参考訳(メタデータ) (2020-04-24T17:21:32Z) - Translation Artifacts in Cross-lingual Transfer Learning [51.66536640084888]
機械翻訳は、既存の言語間モデルに顕著な影響を与える微妙なアーティファクトを導入することができることを示す。
自然言語の推論では、前提と仮説を独立に翻訳することで、それらの間の語彙的重複を減らすことができる。
また、XNLIでは、それぞれ4.3点と2.8点の翻訳とゼロショットのアプローチを改善している。
論文 参考訳(メタデータ) (2020-04-09T17:54:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。