論文の概要: Improving Multilingual Neural Machine Translation by Utilizing Semantic and Linguistic Features
- arxiv url: http://arxiv.org/abs/2408.01394v1
- Date: Fri, 2 Aug 2024 17:10:12 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-05 12:38:29.994532
- Title: Improving Multilingual Neural Machine Translation by Utilizing Semantic and Linguistic Features
- Title(参考訳): 意味的特徴と言語的特徴を利用した多言語ニューラルマシン翻訳の改良
- Authors: Mengyu Bu, Shuhao Gu, Yang Feng,
- Abstract要約: 複数の言語間の意味的特徴と言語的特徴を利用して多言語翻訳を強化することを提案する。
エンコーダ側では,意味的特徴と言語的特徴を両立させることにより,エンコーダ表現を整合させる非係合学習タスクを導入する。
デコーダ側では、言語エンコーダを利用して低レベル言語機能を統合し、ターゲット言語生成を支援する。
- 参考スコア(独自算出の注目度): 18.76505158652759
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: The many-to-many multilingual neural machine translation can be regarded as the process of integrating semantic features from the source sentences and linguistic features from the target sentences. To enhance zero-shot translation, models need to share knowledge across languages, which can be achieved through auxiliary tasks for learning a universal representation or cross-lingual mapping. To this end, we propose to exploit both semantic and linguistic features between multiple languages to enhance multilingual translation. On the encoder side, we introduce a disentangling learning task that aligns encoder representations by disentangling semantic and linguistic features, thus facilitating knowledge transfer while preserving complete information. On the decoder side, we leverage a linguistic encoder to integrate low-level linguistic features to assist in the target language generation. Experimental results on multilingual datasets demonstrate significant improvement in zero-shot translation compared to the baseline system, while maintaining performance in supervised translation. Further analysis validates the effectiveness of our method in leveraging both semantic and linguistic features. The code is available at https://github.com/ictnlp/SemLing-MNMT.
- Abstract(参考訳): 多言語多言語ニューラルマシン翻訳は、原文からの意味的特徴と対象文からの言語的特徴を統合する過程とみなすことができる。
ゼロショット翻訳を強化するために、モデルは言語間で知識を共有する必要がある。
そこで本稿では,複数言語間の意味的特徴と言語的特徴を両立させ,多言語翻訳を強化することを提案する。
エンコーダ側では,意味的特徴と言語的特徴を両立させることで,エンコーダ表現の整合性を図った不整合学習タスクを導入し,完全な情報を保持しながら知識伝達を容易にする。
デコーダ側では、言語エンコーダを利用して低レベル言語機能を統合し、ターゲット言語生成を支援する。
多言語データセットの実験結果は、教師付き翻訳の性能を維持しながら、ベースラインシステムと比較してゼロショット翻訳の大幅な改善を示す。
さらに分析により,意味的特徴と言語的特徴の両面を活用した手法の有効性が検証された。
コードはhttps://github.com/ictnlp/SemLing-MNMTで公開されている。
関連論文リスト
- UniPSDA: Unsupervised Pseudo Semantic Data Augmentation for Zero-Shot Cross-Lingual Natural Language Understanding [31.272603877215733]
言語間の表現学習は、リソースに富んだデータからリソースに密着したデータへ知識を伝達し、異なる言語の意味理解能力を改善する。
言語間自然言語理解のためのunsupervised Pseudo Semantic Data Augmentation (UniPSDA) 機構を提案する。
論文 参考訳(メタデータ) (2024-06-24T07:27:01Z) - Towards a Deep Understanding of Multilingual End-to-End Speech
Translation [52.26739715012842]
我々は22言語以上で訓練された多言語エンドツーエンド音声翻訳モデルで学習した表現を解析する。
我々は分析から3つの大きな発見を得た。
論文 参考訳(メタデータ) (2023-10-31T13:50:55Z) - Informative Language Representation Learning for Massively Multilingual
Neural Machine Translation [47.19129812325682]
多言語ニューラルマシン翻訳モデルでは、通常、人工言語トークンを使用して、所望のターゲット言語への翻訳をガイドする。
近年の研究では、先行する言語トークンは、多言語ニューラルマシン翻訳モデルから正しい翻訳方向へのナビゲートに失敗することがある。
本稿では,言語埋め込み型エンボディメントと言語認識型マルチヘッドアテンションという2つの手法を提案する。
論文 参考訳(メタデータ) (2022-09-04T04:27:17Z) - Exposing Cross-Lingual Lexical Knowledge from Multilingual Sentence
Encoders [85.80950708769923]
本稿では,多言語言語モデルを用いて,それらのパラメータに格納された言語間語彙の知識量を探索し,元の多言語LMと比較する。
また、この知識を付加的に微調整した多言語モデルにより公開する新しい手法も考案した。
標準ベンチマークの大幅な向上を報告します。
論文 参考訳(メタデータ) (2022-04-30T13:23:16Z) - VECO: Variable and Flexible Cross-lingual Pre-training for Language
Understanding and Generation [77.82373082024934]
我々はTransformerエンコーダにクロスアテンションモジュールを挿入し、言語間の相互依存を明確に構築する。
独自の言語でコンテキストにのみ条件付けされたマスク付き単語の予測の退化を効果的に回避することができる。
提案した言語間モデルでは,XTREMEベンチマークのさまざまな言語間理解タスクに対して,最先端の新たな結果が提供される。
論文 参考訳(メタデータ) (2020-10-30T03:41:38Z) - FILTER: An Enhanced Fusion Method for Cross-lingual Language
Understanding [85.29270319872597]
我々は,XLMファインタニングの入力として言語間データを利用する拡張融合法を提案する。
推論中は、ターゲット言語で入力されたテキストとソース言語の翻訳に基づいて予測を行う。
この問題に対処するため,対象言語における翻訳テキストのための自動生成ソフト擬似ラベルに基づくモデル学習のためのKL分割自己学習損失を提案する。
論文 参考訳(メタデータ) (2020-09-10T22:42:15Z) - CSTNet: Contrastive Speech Translation Network for Self-Supervised
Speech Representation Learning [11.552745999302905]
7000の言語のうち、半数以上が絶滅の危機にさらされている。
音声に対応するテキスト翻訳は比較的容易である。
音声から言語表現を抽出できる畳み込みニューラルネットワークオーディオエンコーダを構築する。
論文 参考訳(メタデータ) (2020-06-04T12:21:48Z) - Bridging Linguistic Typology and Multilingual Machine Translation with
Multi-View Language Representations [83.27475281544868]
特異ベクトル標準相関解析を用いて、各情報源からどのような情報が誘導されるかを調べる。
我々の表現は類型学を組み込み、言語関係と相関関係を強化する。
次に、多言語機械翻訳のための多視点言語ベクトル空間を利用して、競合する全体的な翻訳精度を実現する。
論文 参考訳(メタデータ) (2020-04-30T16:25:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。