Counterfactual-based Root Cause Analysis for Dynamical Systems
- URL: http://arxiv.org/abs/2406.08106v1
- Date: Wed, 12 Jun 2024 11:38:13 GMT
- Title: Counterfactual-based Root Cause Analysis for Dynamical Systems
- Authors: Juliane Weilbach, Sebastian Gerwinn, Karim Barsim, Martin Fränzle,
- Abstract summary: We propose a causal method for root cause identification using a Residual Neural Network.
We show that more root causes are identified when an intervention is performed on the structural equation and the external influence.
We illustrate the effectiveness of the proposed method on a benchmark dynamic system as well as on a real world river dataset.
- Score: 0.33748750222488655
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Identifying the underlying reason for a failing dynamic process or otherwise anomalous observation is a fundamental challenge, yet has numerous industrial applications. Identifying the failure-causing sub-system using causal inference, one can ask the question: "Would the observed failure also occur, if we had replaced the behaviour of a sub-system at a certain point in time with its normal behaviour?" To this end, a formal description of behaviour of the full system is needed in which such counterfactual questions can be answered. However, existing causal methods for root cause identification are typically limited to static settings and focusing on additive external influences causing failures rather than structural influences. In this paper, we address these problems by modelling the dynamic causal system using a Residual Neural Network and deriving corresponding counterfactual distributions over trajectories. We show quantitatively that more root causes are identified when an intervention is performed on the structural equation and the external influence, compared to an intervention on the external influence only. By employing an efficient approximation to a corresponding Shapley value, we also obtain a ranking between the different subsystems at different points in time being responsible for an observed failure, which is applicable in settings with large number of variables. We illustrate the effectiveness of the proposed method on a benchmark dynamic system as well as on a real world river dataset.
Related papers
- Unified Causality Analysis Based on the Degrees of Freedom [1.2289361708127877]
This paper presents a unified method capable of identifying fundamental causal relationships between pairs of systems.
By analyzing the degrees of freedom in the system, our approach provides a more comprehensive understanding of both causal influence and hidden confounders.
This unified framework is validated through theoretical models and simulations, demonstrating its robustness and potential for broader application.
arXiv Detail & Related papers (2024-10-25T10:57:35Z) - A Practical Approach to Causal Inference over Time [17.660953125689105]
We define causal interventions and their effects over time on discrete-time processes (DSPs)
We show under which conditions the equilibrium states of a DSP, both before and after a causal intervention, can be captured by a structural causal model (SCM)
The resulting causal VAR framework allows us to perform causal inference over time from observational time series data.
arXiv Detail & Related papers (2024-10-14T13:45:20Z) - Multi-modal Causal Structure Learning and Root Cause Analysis [67.67578590390907]
We propose Mulan, a unified multi-modal causal structure learning method for root cause localization.
We leverage a log-tailored language model to facilitate log representation learning, converting log sequences into time-series data.
We also introduce a novel key performance indicator-aware attention mechanism for assessing modality reliability and co-learning a final causal graph.
arXiv Detail & Related papers (2024-02-04T05:50:38Z) - Nonparametric Identifiability of Causal Representations from Unknown
Interventions [63.1354734978244]
We study causal representation learning, the task of inferring latent causal variables and their causal relations from mixtures of the variables.
Our goal is to identify both the ground truth latents and their causal graph up to a set of ambiguities which we show to be irresolvable from interventional data.
arXiv Detail & Related papers (2023-06-01T10:51:58Z) - Interactive System-wise Anomaly Detection [66.3766756452743]
Anomaly detection plays a fundamental role in various applications.
It is challenging for existing methods to handle the scenarios where the instances are systems whose characteristics are not readily observed as data.
We develop an end-to-end approach which includes an encoder-decoder module that learns system embeddings.
arXiv Detail & Related papers (2023-04-21T02:20:24Z) - Hierarchical Graph Neural Networks for Causal Discovery and Root Cause
Localization [52.72490784720227]
REASON consists of Topological Causal Discovery and Individual Causal Discovery.
The Topological Causal Discovery component aims to model the fault propagation in order to trace back to the root causes.
The Individual Causal Discovery component focuses on capturing abrupt change patterns of a single system entity.
arXiv Detail & Related papers (2023-02-03T20:17:45Z) - Variation-based Cause Effect Identification [5.744133015573047]
We propose a variation-based cause effect identification (VCEI) framework for causal discovery.
Our framework relies on the principle of independence of cause and mechanism (ICM) under the assumption of an existing acyclic causal link.
In the causal direction, such variations are expected to have no impact on the effect generation mechanism.
arXiv Detail & Related papers (2022-11-22T05:19:12Z) - Causality-Based Multivariate Time Series Anomaly Detection [63.799474860969156]
We formulate the anomaly detection problem from a causal perspective and view anomalies as instances that do not follow the regular causal mechanism to generate the multivariate data.
We then propose a causality-based anomaly detection approach, which first learns the causal structure from data and then infers whether an instance is an anomaly relative to the local causal mechanism.
We evaluate our approach with both simulated and public datasets as well as a case study on real-world AIOps applications.
arXiv Detail & Related papers (2022-06-30T06:00:13Z) - Disentangling Observed Causal Effects from Latent Confounders using
Method of Moments [67.27068846108047]
We provide guarantees on identifiability and learnability under mild assumptions.
We develop efficient algorithms based on coupled tensor decomposition with linear constraints to obtain scalable and guaranteed solutions.
arXiv Detail & Related papers (2021-01-17T07:48:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.