Unified Causality Analysis Based on the Degrees of Freedom
- URL: http://arxiv.org/abs/2410.19469v1
- Date: Fri, 25 Oct 2024 10:57:35 GMT
- Title: Unified Causality Analysis Based on the Degrees of Freedom
- Authors: András Telcs, Marcell T. Kurbucz, Antal Jakovác,
- Abstract summary: This paper presents a unified method capable of identifying fundamental causal relationships between pairs of systems.
By analyzing the degrees of freedom in the system, our approach provides a more comprehensive understanding of both causal influence and hidden confounders.
This unified framework is validated through theoretical models and simulations, demonstrating its robustness and potential for broader application.
- Score: 1.2289361708127877
- License:
- Abstract: Temporally evolving systems are typically modeled by dynamic equations. A key challenge in accurate modeling is understanding the causal relationships between subsystems, as well as identifying the presence and influence of unobserved hidden drivers on the observed dynamics. This paper presents a unified method capable of identifying fundamental causal relationships between pairs of systems, whether deterministic or stochastic. Notably, the method also uncovers hidden common causes beyond the observed variables. By analyzing the degrees of freedom in the system, our approach provides a more comprehensive understanding of both causal influence and hidden confounders. This unified framework is validated through theoretical models and simulations, demonstrating its robustness and potential for broader application.
Related papers
- Identifiability Analysis of Linear ODE Systems with Hidden Confounders [45.14890063421295]
This paper presents a systematic analysis of identifiability in linear ODE systems incorporating hidden confounders.
In the first case, latent confounders exhibit no causal relationships, yet their evolution adheres to specific forms.
Subsequently, we extend this analysis to encompass scenarios where hidden confounders exhibit causal dependencies.
arXiv Detail & Related papers (2024-10-29T10:15:56Z) - Identifiable Representation and Model Learning for Latent Dynamic Systems [0.0]
We study the problem of identifiable representation and model learning for latent dynamic systems.
We prove that, for linear or affine nonlinear latent dynamic systems, it is possible to identify the representations up to scaling and determine the models up to some simple transformations.
arXiv Detail & Related papers (2024-10-23T13:55:42Z) - Systems with Switching Causal Relations: A Meta-Causal Perspective [18.752058058199847]
flexibility of agents' actions or tipping points in the environmental process can change the qualitative dynamics of the system.
New causal relationships may emerge, while existing ones change or disappear, resulting in an altered causal graph.
We propose the concept of meta-causal states, which groups classical causal models into clusters based on equivalent qualitative behavior.
arXiv Detail & Related papers (2024-10-16T21:32:31Z) - Sequential Representation Learning via Static-Dynamic Conditional Disentanglement [58.19137637859017]
This paper explores self-supervised disentangled representation learning within sequential data, focusing on separating time-independent and time-varying factors in videos.
We propose a new model that breaks the usual independence assumption between those factors by explicitly accounting for the causal relationship between the static/dynamic variables.
Experiments show that the proposed approach outperforms previous complex state-of-the-art techniques in scenarios where the dynamics of a scene are influenced by its content.
arXiv Detail & Related papers (2024-08-10T17:04:39Z) - Data driven modeling for self-similar dynamics [1.0790314700764785]
We introduce a multiscale neural network framework that incorporates self-similarity as prior knowledge.
For deterministic dynamics, our framework can discern whether the dynamics are self-similar.
Our method can identify the power law exponents in self-similar systems.
arXiv Detail & Related papers (2023-10-12T12:39:08Z) - Interpretable Imitation Learning with Dynamic Causal Relations [65.18456572421702]
We propose to expose captured knowledge in the form of a directed acyclic causal graph.
We also design this causal discovery process to be state-dependent, enabling it to model the dynamics in latent causal graphs.
The proposed framework is composed of three parts: a dynamic causal discovery module, a causality encoding module, and a prediction module, and is trained in an end-to-end manner.
arXiv Detail & Related papers (2023-09-30T20:59:42Z) - Identifying Weight-Variant Latent Causal Models [82.14087963690561]
We find that transitivity acts as a key role in impeding the identifiability of latent causal representations.
Under some mild assumptions, we can show that the latent causal representations can be identified up to trivial permutation and scaling.
We propose a novel method, termed Structural caUsAl Variational autoEncoder, which directly learns latent causal representations and causal relationships among them.
arXiv Detail & Related papers (2022-08-30T11:12:59Z) - Disentangling Observed Causal Effects from Latent Confounders using
Method of Moments [67.27068846108047]
We provide guarantees on identifiability and learnability under mild assumptions.
We develop efficient algorithms based on coupled tensor decomposition with linear constraints to obtain scalable and guaranteed solutions.
arXiv Detail & Related papers (2021-01-17T07:48:45Z) - Causal Discovery in Physical Systems from Videos [123.79211190669821]
Causal discovery is at the core of human cognition.
We consider the task of causal discovery from videos in an end-to-end fashion without supervision on the ground-truth graph structure.
arXiv Detail & Related papers (2020-07-01T17:29:57Z) - End-to-End Models for the Analysis of System 1 and System 2 Interactions
based on Eye-Tracking Data [99.00520068425759]
We propose a computational method, within a modified visual version of the well-known Stroop test, for the identification of different tasks and potential conflicts events.
A statistical analysis shows that the selected variables can characterize the variation of attentive load within different scenarios.
We show that Machine Learning techniques allow to distinguish between different tasks with a good classification accuracy.
arXiv Detail & Related papers (2020-02-03T17:46:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.