論文の概要: Short-Long Convolutions Help Hardware-Efficient Linear Attention to Focus on Long Sequences
- arxiv url: http://arxiv.org/abs/2406.08128v3
- Date: Fri, 14 Jun 2024 02:37:24 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-17 18:03:47.127733
- Title: Short-Long Convolutions Help Hardware-Efficient Linear Attention to Focus on Long Sequences
- Title(参考訳): ショートロングコンボリューションは、ハードウェア効率の良いリニアアテンションで長いシーケンスにフォーカスするのに役立つ
- Authors: Zicheng Liu, Siyuan Li, Li Wang, Zedong Wang, Yunfan Liu, Stan Z. Li,
- Abstract要約: 本稿では,状態空間モデルを短時間の畳み込みに置き換えたCHELAを提案する。
提案手法の有効性を示すために,Long Range Arenaベンチマークと言語モデリングタスクについて実験を行った。
- 参考スコア(独自算出の注目度): 60.489682735061415
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: To mitigate the computational complexity in the self-attention mechanism on long sequences, linear attention utilizes computation tricks to achieve linear complexity, while state space models (SSMs) popularize a favorable practice of using non-data-dependent memory pattern, i.e., emphasize the near and neglect the distant, to processing sequences. Recent studies have shown the priorities by combining them as one. However, the efficiency of linear attention remains only at the theoretical level in a causal setting, and SSMs require various designed constraints to operate effectively on specific data. Therefore, in order to unveil the true power of the hybrid design, the following two issues need to be addressed: (1) hardware-efficient implementation for linear attention and (2) stabilization of SSMs. To achieve this, we leverage the thought of tiling and hierarchy to propose CHELA (short-long Convolutions with Hardware-Efficient Linear Attention), which replaces SSMs with short-long convolutions and implements linear attention in a divide-and-conquer manner. This approach enjoys global abstraction and data-dependent selection from stable SSM and linear attention while maintaining real linear complexity. Our comprehensive experiments on the Long Range Arena benchmark and language modeling tasks demonstrate the effectiveness of the proposed method.
- Abstract(参考訳): 長い列上の自己アテンション機構における計算複雑性を軽減するために、線形アテンションは計算トリックを利用して線形複雑性を実現する。
近年の研究では、これらを1つに組み合わせた優先順位が示されている。
しかし、線形注意の効率は因果関係において理論レベルに留まらず、SSMは特定のデータに対して効果的に操作するために様々な設計上の制約を必要とする。
したがって,ハイブリッド設計の真のパワーを明らかにするためには,(1)線形注意のためのハードウェア効率の良い実装,(2)SSMの安定化という2つの課題に対処する必要がある。
これを実現するために、タイリングと階層の考え方を活用して、短時間の畳み込みでSSMを置き換えるCHELA(short-long Convolutions with Hardware-Efficient Linear Attention)を提案する。
このアプローチは、線形複雑性を維持しつつ、安定なSSMと線形注意からのグローバルな抽象化とデータ依存の選択を享受する。
提案手法の有効性を示すために,Long Range Arenaベンチマークと言語モデリングタスクに関する総合的な実験を行った。
関連論文リスト
- Sparser is Faster and Less is More: Efficient Sparse Attention for Long-Range Transformers [58.5711048151424]
SPARSEK Attention(SPARSEK Attention)は、計算およびメモリ障害を克服するために設計された、新しいスパースアテンション機構である。
提案手法では,各クエリに対して一定数のKVペアを選択するために,スコアリングネットワークと差別化可能なトップkマスク演算子であるSPARSEKを統合する。
実験結果から,SPARSEK注意は従来のスパースアテンション法よりも優れていた。
論文 参考訳(メタデータ) (2024-06-24T15:55:59Z) - LongVQ: Long Sequence Modeling with Vector Quantization on Structured Memory [63.41820940103348]
自己保持機構の計算コストは、長いシーケンスの実用性を制限する。
我々はLongVQと呼ばれる新しい手法を提案し、長さ固定されたコードブックとしてグローバルな抽象化を圧縮する。
LongVQは動的グローバルパターンとローカルパターンを効果的に維持し、長距離依存性の問題の欠如を補うのに役立つ。
論文 参考訳(メタデータ) (2024-04-17T08:26:34Z) - Bidirectional Long-Range Parser for Sequential Data Understanding [3.76054468268713]
BLRP(Bidirectional Long-Range)は,長距離タスクの性能向上と効率向上を目的とした,新規で汎用的なアテンション機構である。
我々は、最先端の手法に対する競争結果を示すことによって、ビジョンと言語ドメインに対するアプローチの利点と汎用性を示す。
論文 参考訳(メタデータ) (2024-04-08T05:45:03Z) - HARMamba: Efficient Wearable Sensor Human Activity Recognition Based on Bidirectional Selective SSM [7.412537185607976]
ウェアラブルセンサーによる人間の活動認識(HAR)は、活動知覚において重要な研究領域である。
本研究は,選択的双方向SSMとハードウェア対応設計を組み合わせた,革新的な軽量で多用途なHARアーキテクチャであるHARMambaを紹介する。
HarMambaは現代の最先端フレームワークより優れており、計算とメモリの要求を大幅に削減し、同等またはより良い精度を提供する。
論文 参考訳(メタデータ) (2024-03-29T13:57:46Z) - SEA: Sparse Linear Attention with Estimated Attention Mask [51.22399593954608]
長い連続性は、注意操作の二次的な複雑さのために問題を引き起こす。
従来の研究は、注意行列をスパース化または線形に近似することで複雑さを低下させることを目的としていた。
推定アテンションマスクを用いたSparse linear attentionを提案する。
論文 参考訳(メタデータ) (2023-10-03T03:56:26Z) - Sketching as a Tool for Understanding and Accelerating Self-attention
for Long Sequences [52.6022911513076]
トランスフォーマーベースのモデルは、自己アテンションモジュールの二次空間と時間的複雑さのために、長いシーケンスを処理するのに効率的ではない。
我々はLinformerとInformerを提案し、低次元投影と行選択により2次複雑性を線形(モジュラー対数因子)に還元する。
理論的解析に基づいて,Skeinformerを提案することにより,自己注意の促進と,自己注意への行列近似の精度の向上を図ることができる。
論文 参考訳(メタデータ) (2021-12-10T06:58:05Z) - Adaptive Multi-Resolution Attention with Linear Complexity [18.64163036371161]
本稿では,AdaMRA(Adaptive Multi-Resolution Attention)という新しい構造を提案する。
我々はマルチレゾリューション・マルチヘッド・アテンション・メカニズムを活用し、アテンションヘッドが粗い方法で長距離コンテキスト情報をキャプチャすることを可能にする。
科学コミュニティによるAdaMRAの利用を促進するため、コード実装を一般公開する予定である。
論文 参考訳(メタデータ) (2021-08-10T23:17:16Z) - Optimization-driven Machine Learning for Intelligent Reflecting Surfaces
Assisted Wireless Networks [82.33619654835348]
インテリジェントサーフェス(IRS)は、個々の散乱素子の位相シフトを制御して無線チャネルを再形成するために用いられる。
散乱素子の規模が大きいため、受動ビームフォーミングは一般に高い計算複雑性によって挑戦される。
本稿では、IRS支援無線ネットワークの性能向上のための機械学習(ML)アプローチに焦点を当てる。
論文 参考訳(メタデータ) (2020-08-29T08:39:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。