論文の概要: Free Parametrization of L2-bounded State Space Models
- arxiv url: http://arxiv.org/abs/2503.23818v1
- Date: Mon, 31 Mar 2025 07:56:17 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-01 14:32:33.161106
- Title: Free Parametrization of L2-bounded State Space Models
- Title(参考訳): L2有界状態空間モデルの自由パラメトリゼーション
- Authors: Leonardo Massai, Giancarlo Ferrari-Trecate,
- Abstract要約: 本稿では、入力出力安定性とロバスト性を保証する構造化状態空間モデル(SSM)の新たなパラメトリゼーションであるL2RUを紹介する。
L2-bound を指定した正方形離散時間 LTI システムの非保守的パラメトリゼーションを導出し,L2RU アーキテクチャの基礎となる。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Structured state-space models (SSMs) have emerged as a powerful architecture in machine learning and control, featuring stacked layers where each consists of a linear time-invariant (LTI) discrete-time system followed by a nonlinearity. While SSMs offer computational efficiency and excel in long-sequence predictions, their widespread adoption in applications like system identification and optimal control is hindered by the challenge of ensuring their stability and robustness properties. We introduce L2RU, a novel parametrization of SSMs that guarantees input-output stability and robustness by enforcing a prescribed L-bound for all parameter values. This design eliminates the need for complex constraints, allowing unconstrained optimization over L2RUs by using standard methods such as gradient descent. Leveraging tools from system theory and convex optimization, we derive a non-conservative parametrization of square discrete-time LTI systems with a specified L2-bound, forming the foundation of the L2RU architecture. Additionally, we enhance its performance with a bespoke initialization strategy optimized for long input sequences. Through a system identification task, we validate L2RU's superior performance, showcasing its potential in learning and control applications.
- Abstract(参考訳): 構造化状態空間モデル (Structured State-space Model, SSM) は、機械学習と制御において強力なアーキテクチャとして登場し、それぞれが線形時間不変(LTI)離散時間システムと非線形性を持つ積層層を特徴としている。
SSMは、長いシーケンス予測において計算効率と優れた性能を提供するが、システム識別や最適制御といったアプリケーションに広く採用されていることは、安定性と堅牢性を保証するという課題によって妨げられている。
本稿では,全てのパラメータに対して所定のLバウンドを強制することにより,入力出力安定性とロバスト性を保証する新しいSSMのパラメトリゼーションであるL2RUを紹介する。
この設計は複雑な制約を排除し、勾配降下のような標準手法を用いることでL2RUの非制約最適化を可能にする。
システム理論と凸最適化からツールを活用することで、L2-boundを指定した正方形離散時間LTIシステムの非保守的パラメトリゼーションを導出し、L2RUアーキテクチャの基礎となる。
さらに、長い入力シーケンスに最適化されたbespoke初期化戦略により、その性能を向上する。
システム識別タスクを通じて、L2RUの優れた性能を検証し、学習および制御アプリケーションにおけるその可能性を示す。
関連論文リスト
- Latent feedback control of distributed systems in multiple scenarios through deep learning-based reduced order models [3.5161229331588095]
高次元分散システムの継続的な監視とリアルタイム制御は、望まれる物理的な振る舞いを保証するためにアプリケーションに不可欠である。
完全順序モデルに依存する従来のフィードバック制御設計は、制御計算の遅延のため、これらの要求を満たすことができない。
非線形非侵襲的深層学習に基づく還元順序モデル(DL-ROM)により強化されたリアルタイム閉ループ制御戦略を提案する。
論文 参考訳(メタデータ) (2024-12-13T08:04:21Z) - Bypass Back-propagation: Optimization-based Structural Pruning for Large Language Models via Policy Gradient [57.9629676017527]
大規模言語モデルを用いた最適化に基づく構造解析手法を提案する。
我々は,プルーニングモデルの損失を最適化することにより,確率空間におけるプルーニングマスクを直接学習する。
A100 GPUで13Bモデルに対して約35GBのメモリで2.7時間動作させる。
論文 参考訳(メタデータ) (2024-06-15T09:31:03Z) - Short-Long Convolutions Help Hardware-Efficient Linear Attention to Focus on Long Sequences [60.489682735061415]
本稿では,状態空間モデルを短時間の畳み込みに置き換えたCHELAを提案する。
提案手法の有効性を示すために,Long Range Arenaベンチマークと言語モデリングタスクについて実験を行った。
論文 参考訳(メタデータ) (2024-06-12T12:12:38Z) - HOPE for a Robust Parameterization of Long-memory State Space Models [51.66430224089725]
線形時間不変(LTI)システムを利用する状態空間モデル(SSM)は、長いシーケンスの学習において有効であることが知られている。
我々は,ハンケル作用素内のマルコフパラメータを利用するLTIシステムに対して,HOPEと呼ばれる新しいパラメータ化手法を開発した。
我々の新しいパラメータ化は、固定時間ウィンドウ内に非遅延メモリを付与し、パッドドノイズのあるシーケンシャルCIFAR-10タスクによって実証的に相関する。
論文 参考訳(メタデータ) (2024-05-22T20:20:14Z) - Nonlinear MPC design for incrementally ISS systems with application to
GRU networks [0.0]
本稿では,指数関数的にインクリメンタルな入力-状態安定(ISS)システムのためのモデル予測制御(NMPC)戦略の設計について述べる。
設計手法は、リカレントニューラルネットワーク(RNN)によって学習されたシステムの制御に特に適している。
このアプローチは Gated Recurrent Unit (GRU) ネットワークに適用され、収束保証を備えた調整状態オブザーバの設計方法も提供する。
論文 参考訳(メタデータ) (2023-09-28T13:26:20Z) - Data-Driven Optimized Tracking Control Heuristic for MIMO Structures: A
Balance System Case Study [8.035375408614776]
PIDは2入力の2アウトプットバランスシステムで示される。
自己調整型非線形しきい値とニューラルネットワークを統合し、所望の過渡特性と定常特性を妥協する。
ニューラルネットワークは、客観的コスト関数のような重み付き導関数の最適化を訓練する。
論文 参考訳(メタデータ) (2021-04-01T02:00:20Z) - Optimization-driven Machine Learning for Intelligent Reflecting Surfaces
Assisted Wireless Networks [82.33619654835348]
インテリジェントサーフェス(IRS)は、個々の散乱素子の位相シフトを制御して無線チャネルを再形成するために用いられる。
散乱素子の規模が大きいため、受動ビームフォーミングは一般に高い計算複雑性によって挑戦される。
本稿では、IRS支援無線ネットワークの性能向上のための機械学習(ML)アプローチに焦点を当てる。
論文 参考訳(メタデータ) (2020-08-29T08:39:43Z) - Adaptive Control and Regret Minimization in Linear Quadratic Gaussian
(LQG) Setting [91.43582419264763]
我々は不確実性に直面した楽観主義の原理に基づく新しい強化学習アルゴリズムLqgOptを提案する。
LqgOptはシステムのダイナミクスを効率的に探索し、モデルのパラメータを信頼区間まで推定し、最も楽観的なモデルのコントローラをデプロイする。
論文 参考訳(メタデータ) (2020-03-12T19:56:38Z) - Certified Reinforcement Learning with Logic Guidance [78.2286146954051]
線形時間論理(LTL)を用いて未知の連続状態/動作マルコフ決定過程(MDP)のゴールを定式化できるモデルフリーなRLアルゴリズムを提案する。
このアルゴリズムは、トレースが仕様を最大確率で満たす制御ポリシーを合成することが保証される。
論文 参考訳(メタデータ) (2019-02-02T20:09:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。