論文の概要: CT3D++: Improving 3D Object Detection with Keypoint-induced Channel-wise Transformer
- arxiv url: http://arxiv.org/abs/2406.08152v1
- Date: Wed, 12 Jun 2024 12:40:28 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-13 17:05:29.531873
- Title: CT3D++: Improving 3D Object Detection with Keypoint-induced Channel-wise Transformer
- Title(参考訳): CT3D++:Keypoint-induced Channel-wise Transformerによる3Dオブジェクト検出の改善
- Authors: Hualian Sheng, Sijia Cai, Na Zhao, Bing Deng, Qiao Liang, Min-Jian Zhao, Jieping Ye,
- Abstract要約: 手作りの最小限の設計で3Dオブジェクト検出を行うフレームワークを2つ導入する。
まず,本提案では,各提案において,生点ベースの埋め込み,標準トランスフォーマーエンコーダ,チャンネルワイドデコーダを順次実行するCT3Dを提案する。
次に、幾何学的および意味論的融合に基づく埋め込みを組み込んだCT3D++と呼ばれる拡張ネットワークを提案し、より価値があり包括的な提案認識情報を取り出す。
- 参考スコア(独自算出の注目度): 42.68740105997167
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The field of 3D object detection from point clouds is rapidly advancing in computer vision, aiming to accurately and efficiently detect and localize objects in three-dimensional space. Current 3D detectors commonly fall short in terms of flexibility and scalability, with ample room for advancements in performance. In this paper, our objective is to address these limitations by introducing two frameworks for 3D object detection with minimal hand-crafted design. Firstly, we propose CT3D, which sequentially performs raw-point-based embedding, a standard Transformer encoder, and a channel-wise decoder for point features within each proposal. Secondly, we present an enhanced network called CT3D++, which incorporates geometric and semantic fusion-based embedding to extract more valuable and comprehensive proposal-aware information. Additionally, CT3D ++ utilizes a point-to-key bidirectional encoder for more efficient feature encoding with reduced computational cost. By replacing the corresponding components of CT3D with these novel modules, CT3D++ achieves state-of-the-art performance on both the KITTI dataset and the large-scale Way\-mo Open Dataset. The source code for our frameworks will be made accessible at https://github.com/hlsheng1/CT3D-plusplus.
- Abstract(参考訳): 点雲からの3次元物体検出の分野は、コンピュータビジョンにおいて急速に進歩しており、三次元空間における物体を正確にかつ効率的に検出し、ローカライズすることを目的としている。
現在の3D検出器は、柔軟性とスケーラビリティの点で一般的に不足しており、性能が向上する余地は十分にある。
本稿では,手作りデザインを最小限に抑えた3次元物体検出のための2つのフレームワークを導入することで,これらの制約に対処することを目的とする。
まず,本提案では,各提案において,生点ベースの埋め込み,標準トランスフォーマーエンコーダ,チャンネルワイドデコーダを順次実行するCT3Dを提案する。
次に、幾何学的および意味論的融合に基づく埋め込みを組み込んだCT3D++と呼ばれる拡張ネットワークを提案し、より価値があり包括的な提案認識情報を取り出す。
さらにCT3D ++は、より効率的な特徴符号化と計算コストの削減に、ポイントツーキー双方向エンコーダを使用している。
CT3Dの対応するコンポーネントをこれらの新しいモジュールに置き換えることで、CT3D++はKITTIデータセットと大規模なWay\-mo Open Datasetの両方で最先端のパフォーマンスを達成する。
私たちのフレームワークのソースコードはhttps://github.com/hlsheng1/CT3D-plusplusでアクセスできます。
関連論文リスト
- DatasetNeRF: Efficient 3D-aware Data Factory with Generative Radiance Fields [68.94868475824575]
本稿では,無限で高品質な3Dアノテーションを3Dポイントクラウドセグメンテーションとともに生成できる新しいアプローチを提案する。
我々は3次元生成モデルに先立って強力なセマンティクスを活用してセマンティクスデコーダを訓練する。
トレーニングが完了すると、デコーダは遅延空間を効率よく一般化し、無限のデータの生成を可能にする。
論文 参考訳(メタデータ) (2023-11-18T21:58:28Z) - 3DiffTection: 3D Object Detection with Geometry-Aware Diffusion Features [70.50665869806188]
3DiffTectionは、単一の画像から3Dオブジェクトを検出する最先端の方法である。
拡散モデルを微調整し、単一の画像に条件付けされた新しいビュー合成を行う。
さらに、検出監視により、ターゲットデータ上でモデルをトレーニングする。
論文 参考訳(メタデータ) (2023-11-07T23:46:41Z) - HEDNet: A Hierarchical Encoder-Decoder Network for 3D Object Detection
in Point Clouds [19.1921315424192]
ポイントクラウドにおける3Dオブジェクト検出は、自律運転システムにとって重要である。
3Dオブジェクト検出における主な課題は、3Dシーン内の点のスパース分布に起因する。
本稿では3次元オブジェクト検出のための階層型エンコーダデコーダネットワークであるHEDNetを提案する。
論文 参考訳(メタデータ) (2023-10-31T07:32:08Z) - 3D Small Object Detection with Dynamic Spatial Pruning [62.72638845817799]
本稿では,3次元小物体検出のための効率的な特徴解析手法を提案する。
空間分解能の高いDSPDet3Dというマルチレベル3次元検出器を提案する。
ほぼ全ての物体を検知しながら、4500k以上のポイントからなる建物全体を直接処理するには2秒もかからない。
論文 参考訳(メタデータ) (2023-05-05T17:57:04Z) - Viewpoint Equivariance for Multi-View 3D Object Detection [35.4090127133834]
最先端の手法は多視点カメラ入力からのオブジェクト境界ボックスの推論と復号化に重点を置いている。
本稿では,3次元多視点幾何を利用した新しい3次元オブジェクト検出フレームワークであるVEDetを紹介する。
論文 参考訳(メタデータ) (2023-03-25T19:56:41Z) - PointMCD: Boosting Deep Point Cloud Encoders via Multi-view Cross-modal
Distillation for 3D Shape Recognition [55.38462937452363]
本稿では,教師として事前訓練されたディープイメージエンコーダ,学生としてディープポイントエンコーダを含む多視点クロスモーダル蒸留アーキテクチャを提案する。
複数ビューの視覚的および幾何学的記述子をペアワイズにアライメントすることで、より強力なディープポイントエンコーダを、疲労や複雑なネットワーク修正を伴わずに得ることができる。
論文 参考訳(メタデータ) (2022-07-07T07:23:20Z) - Improving 3D Object Detection with Channel-wise Transformer [58.668922561622466]
我々は手作りの最小限の設計で2段階の3Dオブジェクト検出フレームワーク(CT3D)を提案する。
CT3Dは、提案対応の埋め込みとチャンネルワイドコンテキストアグリゲーションを同時に行う。
これはKITTIテスト3D検出ベンチマークで中等車カテゴリーで81.77%のAPを達成した。
論文 参考訳(メタデータ) (2021-08-23T02:03:40Z) - HVPR: Hybrid Voxel-Point Representation for Single-stage 3D Object
Detection [39.64891219500416]
3Dオブジェクト検出手法は、シーン内の3Dオブジェクトを表現するために、ボクセルベースまたはポイントベースの特徴を利用する。
本稿では,voxelベースとポイントベースの両方の特徴を有する,新しい単段3次元検出手法を提案する。
論文 参考訳(メタデータ) (2021-04-02T06:34:49Z) - Making a Case for 3D Convolutions for Object Segmentation in Videos [16.167397418720483]
本研究では,3次元畳み込みネットワークが高精細な物体分割などの高密度映像予測タスクに効果的に適用可能であることを示す。
本稿では,新しい3Dグローバル・コンボリューション・レイヤと3Dリファインメント・モジュールからなる3Dデコーダアーキテクチャを提案する。
提案手法は,DAVIS'16 Unsupervised, FBMS, ViSalベンチマークにおいて,既存の最先端技術よりもはるかに優れている。
論文 参考訳(メタデータ) (2020-08-26T12:24:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。