論文の概要: GPT4Rec: Graph Prompt Tuning for Streaming Recommendation
- arxiv url: http://arxiv.org/abs/2406.08229v2
- Date: Thu, 11 Jul 2024 14:33:23 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-12 22:28:14.740906
- Title: GPT4Rec: Graph Prompt Tuning for Streaming Recommendation
- Title(参考訳): GPT4Rec: ストリームレコメンデーションのためのグラフプロンプトチューニング
- Authors: Peiyan Zhang, Yuchen Yan, Xi Zhang, Liying Kang, Chaozhuo Li, Feiran Huang, Senzhang Wang, Sunghun Kim,
- Abstract要約: 本稿では,ストリームレコメンデーションのためのグラフプロンプトチューニング手法であるGPT4Recを提案する。
特に、GPT4Recはグラフパターンを複数のビューに分解する。
ユーザ-テムグラフ内のさまざまなインタラクションパターンにまたがってモデルをガイドする。
- 参考スコア(独自算出の注目度): 30.604441550735494
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the realm of personalized recommender systems, the challenge of adapting to evolving user preferences and the continuous influx of new users and items is paramount. Conventional models, typically reliant on a static training-test approach, struggle to keep pace with these dynamic demands. Streaming recommendation, particularly through continual graph learning, has emerged as a novel solution. However, existing methods in this area either rely on historical data replay, which is increasingly impractical due to stringent data privacy regulations; or are inability to effectively address the over-stability issue; or depend on model-isolation and expansion strategies. To tackle these difficulties, we present GPT4Rec, a Graph Prompt Tuning method for streaming Recommendation. Given the evolving user-item interaction graph, GPT4Rec first disentangles the graph patterns into multiple views. After isolating specific interaction patterns and relationships in different views, GPT4Rec utilizes lightweight graph prompts to efficiently guide the model across varying interaction patterns within the user-item graph. Firstly, node-level prompts are employed to instruct the model to adapt to changes in the attributes or properties of individual nodes within the graph. Secondly, structure-level prompts guide the model in adapting to broader patterns of connectivity and relationships within the graph. Finally, view-level prompts are innovatively designed to facilitate the aggregation of information from multiple disentangled views. These prompt designs allow GPT4Rec to synthesize a comprehensive understanding of the graph, ensuring that all vital aspects of the user-item interactions are considered and effectively integrated. Experiments on four diverse real-world datasets demonstrate the effectiveness and efficiency of our proposal.
- Abstract(参考訳): パーソナライズされたレコメンデーションシステムの領域では、ユーザの好みの進化と、新しいユーザやアイテムの継続的な流入に適応するという課題が最重要である。
従来のモデルは、通常静的なトレーニング-テストアプローチに依存し、これらの動的な要求に追従するのに苦労する。
ストリーミングレコメンデーション、特に連続グラフ学習は、新しいソリューションとして登場した。
しかし、この領域の既存の手法は、データプライバシの厳格な規制によってますます非現実的になっている履歴データ再生に依存しているか、過度に不安定な問題に効果的に対処できないか、あるいはモデルアイソレーションと拡張戦略に依存している。
このような問題に対処するため,GPT4Recというグラフプロンプトタニング方式でレコメンデーションをストリーミングする手法を提案する。
GPT4Recは、ユーザとイテムの相互作用グラフが進化していることを考慮し、まずグラフパターンを複数のビューに分割する。
GPT4Recは、異なるビューで特定のインタラクションパターンとリレーションシップを分離した後、軽量グラフプロンプトを使用して、ユーザ-テムグラフ内のさまざまなインタラクションパターン間でモデルを効率的にガイドする。
まず、ノードレベルのプロンプトを使用して、グラフ内の個々のノードの属性や特性の変化に適応するようにモデルを指示する。
第二に、構造レベルのプロンプトは、グラフ内の接続性や関係性のより広範なパターンに適応するモデルを導く。
最後に、ビューレベルのプロンプトは、複数の不整合ビューからの情報の集約を容易にするために革新的に設計されている。
これらのプロンプト設計により、GPT4Recはグラフの包括的な理解を合成し、ユーザとイテムの相互作用のすべての重要な側面が考慮され、効果的に統合されることを保証する。
4つの多様な実世界のデータセットに対する実験により,提案手法の有効性と有効性を示した。
関連論文リスト
- Contrastive General Graph Matching with Adaptive Augmentation Sampling [5.3459881796368505]
グラフマッチング(GCGM)のための新しいグラフ中心コントラストフレームワークを提案する。
GCGMは、コントラスト学習のための膨大なグラフ拡張を、副次的な情報を必要としない形で実現している。
当社のGCGMは、さまざまなデータセットにわたる最先端の自己管理手法を超越しています。
論文 参考訳(メタデータ) (2024-06-25T01:08:03Z) - When Graph Data Meets Multimodal: A New Paradigm for Graph Understanding
and Reasoning [54.84870836443311]
本稿では,画像エンコーディングとマルチモーダル技術を統合することで,グラフデータの理解と推論を行う新しいパラダイムを提案する。
このアプローチは, GPT-4Vの高度な機能を利用して, 命令応答形式によるグラフデータの理解を可能にする。
研究は、このパラダイムを様々なグラフタイプで評価し、特に中国のOCRパフォーマンスと複雑な推論タスクにおいて、モデルの強みと弱みを強調した。
論文 参考訳(メタデータ) (2023-12-16T08:14:11Z) - Adaptive spectral graph wavelets for collaborative filtering [5.547800834335382]
協調フィルタリングはレコメンデーションシステムにおいて一般的なアプローチであり、その目的はパーソナライズされた項目の提案を提供することである。
本稿では,暗黙的なフィードバックデータに対するスペクトルグラフウェーブレット協調フィルタリングフレームワークを提案する。
グラフの局所的および大域的構造を捉えることに加えて、我々の手法は空間的およびスペクトル的領域におけるグラフ信号の局所化をもたらす。
論文 参考訳(メタデータ) (2023-12-05T22:22:25Z) - GraphPro: Graph Pre-training and Prompt Learning for Recommendation [18.962982290136935]
GraphProはパラメータ効率と動的グラフ事前トレーニングと即時学習を組み合わせたフレームワークである。
本フレームワークは,時間的プロンプト機構とグラフ構造的プロンプト学習機構をシームレスに統合することにより,ユーザの好みを進化させる課題に対処する。
論文 参考訳(メタデータ) (2023-11-28T12:00:06Z) - APGL4SR: A Generic Framework with Adaptive and Personalized Global
Collaborative Information in Sequential Recommendation [86.29366168836141]
逐次推薦のための適応およびパーソナライズされたグラフ学習(APGL4SR)というグラフ駆動型フレームワークを提案する。
APGL4SRは、適応的でパーソナライズされたグローバルな協調情報をシーケンシャルレコメンデーションシステムに組み込む。
一般的なフレームワークとして、APGL4SRは大きなマージンを持つ他のベースラインよりも優れている。
論文 参考訳(メタデータ) (2023-11-06T01:33:24Z) - Deep Prompt Tuning for Graph Transformers [55.2480439325792]
ファインチューニングはリソース集約型であり、大きなモデルのコピーを複数保存する必要がある。
ファインチューニングの代替として,ディープグラフプロンプトチューニングと呼ばれる新しい手法を提案する。
事前学習したパラメータを凍結し、追加したトークンのみを更新することにより、フリーパラメータの数を減らし、複数のモデルコピーを不要にする。
論文 参考訳(メタデータ) (2023-09-18T20:12:17Z) - Instant Representation Learning for Recommendation over Large Dynamic
Graphs [29.41179019520622]
動的多重多元グラフのための新しいグラフニューラルネットワークSUPAを提案する。
新しいエッジごとに、SUPAは影響のあるサブグラフをサンプリングし、2つの対話ノードの表現を更新し、その相互作用情報をサンプリングされたサブグラフに伝達する。
SuPAをオンラインでインクリメンタルにトレーニングするために、大規模な動的グラフのシングルパストレーニングのための効率的なワークフローであるInsLearnを提案する。
論文 参考訳(メタデータ) (2023-05-22T15:36:10Z) - A Graph-Enhanced Click Model for Web Search [67.27218481132185]
ウェブ検索のための新しいグラフ強調クリックモデル(GraphCM)を提案する。
セッション内情報とセッション間情報の両方を、スパーシリティ問題とコールドスタート問題に活用する。
論文 参考訳(メタデータ) (2022-06-17T08:32:43Z) - Enhancing Sequential Recommendation with Graph Contrastive Learning [64.05023449355036]
本稿では、逐次推薦のためのグラフコントラスト学習(GCL4SR)という、新しいシーケンシャルレコメンデーションフレームワークを提案する。
GCL4SRは、すべてのユーザのインタラクションシーケンスに基づいて構築された重み付きアイテム遷移グラフ(WITG)を使用して、各インタラクションのグローバルなコンテキスト情報を提供し、シーケンスデータのノイズ情報を弱める。
実世界のデータセットの実験では、GCL4SRは最先端のシーケンシャルレコメンデーションメソッドよりも一貫して優れていることが示されている。
論文 参考訳(メタデータ) (2022-05-30T03:53:31Z) - Position-enhanced and Time-aware Graph Convolutional Network for
Sequential Recommendations [3.286961611175469]
我々は、位置対応と時間対応のグラフ畳み込みネットワーク(PTGCN)に基づく、深層学習に基づくシーケンシャルレコメンデーションアプローチを提案する。
PTGCNは、位置対応と時間対応のグラフ畳み込み演算を定義することにより、ユーザとイテム相互作用間の逐次パターンと時間ダイナミクスをモデル化する。
多層グラフ畳み込みを積み重ねることで、ユーザとアイテム間の高次接続を実現する。
論文 参考訳(メタデータ) (2021-07-12T07:34:20Z) - TCL: Transformer-based Dynamic Graph Modelling via Contrastive Learning [87.38675639186405]
我々は,動的に進化するグラフを連続的に扱う,TCLと呼ばれる新しいグラフニューラルネットワークアプローチを提案する。
我々の知る限りでは、これは動的グラフ上の表現学習にコントラスト学習を適用する最初の試みである。
論文 参考訳(メタデータ) (2021-05-17T15:33:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。