論文の概要: A deep cut into Split Federated Self-supervised Learning
- arxiv url: http://arxiv.org/abs/2406.08267v1
- Date: Wed, 12 Jun 2024 14:35:13 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-13 16:36:08.299927
- Title: A deep cut into Split Federated Self-supervised Learning
- Title(参考訳): スプリット・フェデレーションによる自己教師型学習の深化
- Authors: Marcin Przewięźlikowski, Marcin Osial, Bartosz Zieliński, Marek Śmieja,
- Abstract要約: 協調型自己教師型学習は、最近、高度に分散した環境で実現可能になった。
MocoSFLのような最先端の手法は、初期層のネットワーク分割に最適化されている。
MonAcoSFLを導入し、オンラインおよびモーメントクライアントモデルをトレーニング手順中に整列させる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Collaborative self-supervised learning has recently become feasible in highly distributed environments by dividing the network layers between client devices and a central server. However, state-of-the-art methods, such as MocoSFL, are optimized for network division at the initial layers, which decreases the protection of the client data and increases communication overhead. In this paper, we demonstrate that splitting depth is crucial for maintaining privacy and communication efficiency in distributed training. We also show that MocoSFL suffers from a catastrophic quality deterioration for the minimal communication overhead. As a remedy, we introduce Momentum-Aligned contrastive Split Federated Learning (MonAcoSFL), which aligns online and momentum client models during training procedure. Consequently, we achieve state-of-the-art accuracy while significantly reducing the communication overhead, making MonAcoSFL more practical in real-world scenarios.
- Abstract(参考訳): 協調型自己教師型学習は,クライアントデバイスと中央サーバ間のネットワーク層を分割することで,分散環境において実現可能になった。
しかし、MocoSFLのような最先端の手法は、初期層のネットワーク分割に最適化されており、クライアントデータの保護を減らし、通信オーバーヘッドを増大させる。
本稿では,分散トレーニングにおけるプライバシーとコミュニケーションの効率を維持するために,分割深度が重要であることを実証する。
また,MocoSFLは通信オーバーヘッドの最小化のために破滅的な品質劣化に悩まされていることも確認した。
本稿では,Momentum-Aligned contrastive Split Federated Learning (MonAcoSFL)について紹介する。
その結果,MonAcoSFLを現実のシナリオでより実用的なものにし,通信オーバヘッドを大幅に低減し,最先端の精度を実現することができた。
関連論文リスト
- Overlay-based Decentralized Federated Learning in Bandwidth-limited Networks [3.9162099309900835]
分散連合学習(DFL)は、中央集権的調整なしに分散エージェントを直接学習することで、人工知能(AI)の展開を促進するという約束を持っている。
既存のソリューションの多くは、隣接するエージェントが基盤となる通信ネットワークに物理的に隣接しているという単純な仮定に基づいている。
我々は,帯域幅制限ネットワークにおける通信要求と通信スケジュールを,基礎となるネットワークからの明示的な協力を必要とせず,共同で設計する。
論文 参考訳(メタデータ) (2024-08-08T18:05:11Z) - FedComLoc: Communication-Efficient Distributed Training of Sparse and Quantized Models [56.21666819468249]
フェデレートラーニング(FL)は、異種クライアントがローカルにプライベートデータを処理し、中央サーバーと対話できるというユニークな特徴から、注目を集めている。
我々は,emphScaffnewに実用的で効果的な圧縮を統合し,通信効率を向上するFedComLocを紹介した。
論文 参考訳(メタデータ) (2024-03-14T22:29:59Z) - Scheduling and Communication Schemes for Decentralized Federated
Learning [0.31410859223862103]
勾配降下(SGD)アルゴリズムを用いた分散連合学習(DFL)モデルが導入された。
DFLの3つのスケジューリングポリシーがクライアントと並列サーバ間の通信のために提案されている。
その結果,提案した計画警察は,収束速度と最終グローバルモデルの両方に影響を及ぼすことがわかった。
論文 参考訳(メタデータ) (2023-11-27T17:35:28Z) - Efficient Parallel Split Learning over Resource-constrained Wireless
Edge Networks [44.37047471448793]
本稿では,エッジコンピューティングパラダイムと並列分割学習(PSL)の統合を提唱する。
そこで本研究では,モデル学習を高速化するために,効率的な並列分割学習(EPSL)という革新的なPSLフレームワークを提案する。
提案するEPSLフレームワークは,目標精度を達成するために必要なトレーニング遅延を著しく低減することを示す。
論文 参考訳(メタデータ) (2023-03-26T16:09:48Z) - Hierarchical Personalized Federated Learning Over Massive Mobile Edge
Computing Networks [95.39148209543175]
大規模MECネットワーク上でPFLをデプロイするアルゴリズムである階層型PFL(HPFL)を提案する。
HPFLは、最適帯域割り当てを共同で決定しながら、トレーニング損失最小化とラウンドレイテンシ最小化の目的を組み合わせる。
論文 参考訳(メタデータ) (2023-03-19T06:00:05Z) - Improving Privacy-Preserving Vertical Federated Learning by Efficient Communication with ADMM [62.62684911017472]
フェデレートラーニング(FL)により、デバイスは共有モデルを共同でトレーニングし、トレーニングデータをプライバシ目的でローカルに保つことができる。
マルチヘッド(VIM)を備えたVFLフレームワークを導入し、各クライアントの別々のコントリビューションを考慮に入れます。
VIMは最先端技術に比べて性能が著しく向上し、収束が速い。
論文 参考訳(メタデータ) (2022-07-20T23:14:33Z) - DisPFL: Towards Communication-Efficient Personalized Federated Learning
via Decentralized Sparse Training [84.81043932706375]
本稿では,分散型(ピアツーピア)通信プロトコルであるDis-PFLにおいて,新たな個人化フェデレーション学習フレームワークを提案する。
Dis-PFLはパーソナライズされたスパースマスクを使用して、エッジ上のスパースローカルモデルをカスタマイズする。
本手法は,計算複雑性の異なる異種ローカルクライアントに容易に適応できることを実証する。
論文 参考訳(メタデータ) (2022-06-01T02:20:57Z) - Acceleration of Federated Learning with Alleviated Forgetting in Local
Training [61.231021417674235]
フェデレートラーニング(FL)は、プライバシを保護しながら機械学習モデルの分散最適化を可能にする。
我々は,FedRegを提案する。FedRegは,局所的な訓練段階において,知識を忘れることなくFLを加速するアルゴリズムである。
我々の実験は、FedRegはFLの収束率を著しく改善するだけでなく、特にニューラルネットワークアーキテクチャが深い場合にも改善することを示した。
論文 参考訳(メタデータ) (2022-03-05T02:31:32Z) - Communication-Efficient Federated Learning with Dual-Side Low-Rank
Compression [8.353152693578151]
Federated Learning(FL)は、クライアントの生データを共有せずにディープラーニングモデルをトレーニングするための有望で強力なアプローチです。
両サイドローランク圧縮(FedDLR)を用いたフェデレーションラーニングと呼ばれる新しいトレーニング手法を提案する。
我々は,FedDLRがコミュニケーションと効率の両面で最先端のソリューションより優れていることを示す。
論文 参考訳(メタデータ) (2021-04-26T09:13:31Z) - CosSGD: Nonlinear Quantization for Communication-efficient Federated
Learning [62.65937719264881]
フェデレーション学習は、これらのクライアントのローカルデータを中央サーバに転送することなく、クライアント間での学習を促進する。
圧縮勾配降下のための非線形量子化を提案し、フェデレーションラーニングで容易に利用することができる。
本システムは,訓練過程の収束と精度を維持しつつ,通信コストを最大3桁まで削減する。
論文 参考訳(メタデータ) (2020-12-15T12:20:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。