論文の概要: Decoupling the Class Label and the Target Concept in Machine Unlearning
- arxiv url: http://arxiv.org/abs/2406.08288v2
- Date: Sun, 16 Jun 2024 13:07:49 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-19 01:41:06.354385
- Title: Decoupling the Class Label and the Target Concept in Machine Unlearning
- Title(参考訳): 機械学習におけるクラスラベルとターゲット概念の分離
- Authors: Jianing Zhu, Bo Han, Jiangchao Yao, Jianliang Xu, Gang Niu, Masashi Sugiyama,
- Abstract要約: 機械学習の目的は、トレーニングデータの一部を除外した再トレーニングされたモデルを近似するために、トレーニングされたモデルを調整することだ。
過去の研究では、クラスワイド・アンラーニングが対象クラスの知識を忘れることに成功していることが示された。
我々は、TARget-aware Forgetting (TARF) という一般的なフレームワークを提案する。
- 参考スコア(独自算出の注目度): 81.69857244976123
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Machine unlearning as an emerging research topic for data regulations, aims to adjust a trained model to approximate a retrained one that excludes a portion of training data. Previous studies showed that class-wise unlearning is successful in forgetting the knowledge of a target class, through gradient ascent on the forgetting data or fine-tuning with the remaining data. However, while these methods are useful, they are insufficient as the class label and the target concept are often considered to coincide. In this work, we decouple them by considering the label domain mismatch and investigate three problems beyond the conventional all matched forgetting, e.g., target mismatch, model mismatch, and data mismatch forgetting. We systematically analyze the new challenges in restrictively forgetting the target concept and also reveal crucial forgetting dynamics in the representation level to realize these tasks. Based on that, we propose a general framework, namely, TARget-aware Forgetting (TARF). It enables the additional tasks to actively forget the target concept while maintaining the rest part, by simultaneously conducting annealed gradient ascent on the forgetting data and selected gradient descent on the hard-to-affect remaining data. Empirically, various experiments under the newly introduced settings are conducted to demonstrate the effectiveness of our TARF.
- Abstract(参考訳): データ規制の新たな研究トピックである機械学習は、トレーニングデータの一部を除外した再トレーニングされたモデルを近似するために、トレーニングされたモデルを調整することを目的としている。
過去の研究では、学習内容の未学習は、学習対象の授業の知識を忘れることに成功し、忘れるデータへの勾配の上昇や、残りのデータとの微調整を通じて成功した。
しかし、これらの手法は有用であるが、クラスラベルとターゲット概念が一致していると考えられるため不十分である。
本研究は,ラベル領域のミスマッチを考慮し,従来の一致した3つの問題,例えば,ターゲットミスマッチ,モデルミスマッチ,データミスマッチの3つを調査することによって,それらを分離する。
我々は,対象概念を限定的に忘れる新たな課題を体系的に分析し,これらの課題を実現するために,表現レベルにおける重要な忘れのダイナミクスを明らかにする。
そこで我々は,TARF(TARget-aware Forgetting)という一般的なフレームワークを提案する。
これにより、残部を維持しながら目標概念を積極的に忘れることができ、同時に、忘れデータおよび選択した残部データに熱処理された勾配上昇を同時に行うことができる。
実験により, TARFの有効性を実証するため, 新たに導入した環境下で種々の実験を行った。
関連論文リスト
- Granularity Matters in Long-Tail Learning [62.30734737735273]
より粒度の細かいデータセットは、データの不均衡の影響を受けにくい傾向があります。
既存のクラスと視覚的に類似したオープンセット補助クラスを導入し、頭と尾の両方の表現学習を強化することを目的とした。
補助授業の圧倒的な存在がトレーニングを混乱させるのを防ぐために,近隣のサイレンシング障害を導入する。
論文 参考訳(メタデータ) (2024-10-21T13:06:21Z) - Adaptive Rentention & Correction for Continual Learning [114.5656325514408]
連続学習における一般的な問題は、最新のタスクに対する分類層のバイアスである。
アダプティブ・リテンション・アンド・コレクション (ARC) のアプローチを例に挙げる。
ARCはCIFAR-100とImagenet-Rのデータセットで平均2.7%と2.6%のパフォーマンス向上を達成した。
論文 参考訳(メタデータ) (2024-05-23T08:43:09Z) - Partially Blinded Unlearning: Class Unlearning for Deep Networks a Bayesian Perspective [4.31734012105466]
マシン・アンラーニング(英: Machine Unlearning)とは、特定のデータセットやクラスに指定された情報を事前訓練されたモデルから選択的に破棄するプロセスである。
本研究では,事前学習した分類ネットワークから,特定の種類のデータに関連付けられた情報の目的的除去に適した手法を提案する。
本手法は,従来の最先端の未学習手法を超越し,優れた有効性を示す。
論文 参考訳(メタデータ) (2024-03-24T17:33:22Z) - CovarNav: Machine Unlearning via Model Inversion and Covariance
Navigation [11.222501077070765]
機械学習は、訓練されたモデルに対する特定のトレーニングデータポイントの影響を選択的に除去する重要なテクニックとして登場した。
我々は,このことを忘れないように,CovarNavという3段階のプロセスを導入する。
CIFAR-10とVggface2データセット上でCovarNavを厳格に評価する。
論文 参考訳(メタデータ) (2023-11-21T21:19:59Z) - Holistic Transfer: Towards Non-Disruptive Fine-Tuning with Partial
Target Data [32.91362206231936]
本稿では,事前学習したソースモデルを対象領域に適応させ,ソースデータに現れるすべてのクラスを分類する学習問題を提案する。
対象のエンドユーザが適応前にすべてのクラスのデータを集めるのは現実的ではないため,この問題は現実的だ。
欠落したクラスの精度を保ち、全体的な性能を向上する有効なソリューションをいくつか提示する。
論文 参考訳(メタデータ) (2023-11-02T17:35:16Z) - Bridging Non Co-occurrence with Unlabeled In-the-wild Data for
Incremental Object Detection [56.22467011292147]
物体検出における破滅的忘れを緩和するために,いくつかの漸進的学習法が提案されている。
有効性にもかかわらず、これらの手法は新規クラスのトレーニングデータにラベルのないベースクラスの共起を必要とする。
そこで本研究では,新たな授業の訓練において,欠落した基本クラスが原因で生じる非発生を補うために,未ラベルのインザ・ザ・ワイルドデータを使用することを提案する。
論文 参考訳(メタデータ) (2021-10-28T10:57:25Z) - Online Coreset Selection for Rehearsal-based Continual Learning [65.85595842458882]
継続的な学習では、後に再生されるトレーニング例(コアセット)のサブセットを格納し、破滅的な忘れを軽減します。
提案するオンラインコアセット選択(OCS, Online Coreset Selection)は, 各イテレーションにおいて最も代表的で情報性の高いコアセットを選択するシンプルで効果的な方法である。
提案手法は,過去のタスクに対して高親和性サンプルを選択しながら,目標データセットへのモデル適応を最大化し,破滅的忘れを直接的に抑制する。
論文 参考訳(メタデータ) (2021-06-02T11:39:25Z) - Generalized Zero-shot Intent Detection via Commonsense Knowledge [5.398580049917152]
学習データ不足の問題を克服するために,教師なしの方法でコモンセンス知識を活用する意図検出モデル RIDE を提案する。
RIDEは、発話と意図ラベルの間の深い意味的関係をキャプチャする、堅牢で一般化可能な関係メタ機能を計算する。
広範に使用されている3つのインテント検出ベンチマークに関する広範囲な実験的分析により、関係メタ機能により、目に見えないインテントと見えないインテントの両方を検出する精度が著しく向上することが示された。
論文 参考訳(メタデータ) (2021-02-04T23:36:41Z) - Towards Cross-Granularity Few-Shot Learning: Coarse-to-Fine
Pseudo-Labeling with Visual-Semantic Meta-Embedding [13.063136901934865]
少ないショットラーニングは、テスト時に少数のサンプルしか持たない、新しいカテゴリに迅速に適応することを目的としている。
本稿では,より困難なシナリオ,すなわちクロスグラニュラリティ・グラニュラリティ・グラニュラティヴ・グラニュラティヴ・グラニュラティヴ・グラニュラティヴ・グラニュラティヴ・グラニュラティヴ・グラニュラティヴ・グラニュラティヴ・グラニュラティヴ・グラニュラティヴ・グラニュラティヴ・グラニュラティヴ・グラニュラティヴ・グラニュラティヴ・グラニュラティヴ・グラニュラティヴ・グラニュラティヴ・グラニュラ
画像埋め込みの類似性に応じて,各粗いクラスを擬似微細クラスにグリーディクラスタリングすることで,詳細なデータ分布を近似する。
論文 参考訳(メタデータ) (2020-07-11T03:44:21Z) - Incremental Object Detection via Meta-Learning [77.55310507917012]
本稿では,段階的タスク間の情報を最適に共有するように,モデル勾配を再形成するメタラーニング手法を提案する。
既存のメタ学習法と比較して,本手法はタスク非依存であり,オブジェクト検出のための高容量モデルに新たなクラスやスケールを段階的に追加することができる。
論文 参考訳(メタデータ) (2020-03-17T13:40:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。