論文の概要: Transform-Dependent Adversarial Attacks
- arxiv url: http://arxiv.org/abs/2406.08443v2
- Date: Mon, 10 Mar 2025 16:21:26 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-12 15:40:17.452477
- Title: Transform-Dependent Adversarial Attacks
- Title(参考訳): トランスフォーメーション依存型敵攻撃
- Authors: Yaoteng Tan, Zikui Cai, M. Salman Asif,
- Abstract要約: 深層ネットワークに対する変換依存型敵攻撃を導入する。
我々の摂動は変成特性を示し、変換パラメータの関数として多様な逆効果を可能にする。
変換に依存した摂動は、ブラックボックスのシナリオにおいて、最先端の移動攻撃よりも17~31%優れ、高い目標攻撃成功率が得られることを示す。
- 参考スコア(独自算出の注目度): 15.374381635334897
- License:
- Abstract: Deep networks are highly vulnerable to adversarial attacks, yet conventional attack methods utilize static adversarial perturbations that induce fixed mispredictions. In this work, we exploit an overlooked property of adversarial perturbations--their dependence on image transforms--and introduce transform-dependent adversarial attacks. Unlike traditional attacks, our perturbations exhibit metamorphic properties, enabling diverse adversarial effects as a function of transformation parameters. We demonstrate that this transform-dependent vulnerability exists across different architectures (e.g., CNN and transformer), vision tasks (e.g., image classification and object detection), and a wide range of image transforms. Additionally, we show that transform-dependent perturbations can serve as a defense mechanism, preventing sensitive information disclosure when image enhancement transforms pose a risk of revealing private content. Through analysis in blackbox and defended model settings, we show that transform-dependent perturbations achieve high targeted attack success rates, outperforming state-of-the-art transfer attacks by 17-31% in blackbox scenarios. Our work introduces novel, controllable paradigm for adversarial attack deployment, revealing a previously overlooked vulnerability in deep networks.
- Abstract(参考訳): ディープネットワークは敵の攻撃に対して非常に脆弱であるが、従来の攻撃手法では、固定された誤予測を引き起こす静的な敵の摂動を利用する。
本研究では, 画像変換に依存する逆方向の摂動の見過ごされた特性を利用して, 逆方向の攻撃を導入する。
従来の攻撃とは異なり、我々の摂動は変成特性を示し、変換パラメータの関数として多様な逆効果を実現できる。
このトランスフォーメーション依存の脆弱性は、異なるアーキテクチャ(例えば、CNNやトランスフォーマー)、視覚タスク(例えば、画像分類とオブジェクト検出)、幅広い画像変換にまたがって存在していることを実証する。
さらに、画像強調変換がプライベートコンテンツを公開するリスクを負う場合、情報開示の機密化を防止し、トランスフォーメーション依存の摂動が防御機構として機能することを示す。
ブラックボックスの分析とモデル設定により、変換依存の摂動は高い目標攻撃成功率を達成し、ブラックボックスのシナリオでは17~31%の最先端の移動攻撃を上回ります。
我々の研究は、敵の攻撃展開のための新しい制御可能なパラダイムを導入し、これまで見過ごされていた脆弱性をディープネットワークで明らかにした。
関連論文リスト
- Mechanistic Understandings of Representation Vulnerabilities and Engineering Robust Vision Transformers [1.1187085721899017]
視覚変換器(ViT)の既知の表現脆弱性の源泉について検討し、知覚的に同一の画像が全く異なる表現を持つことを示す。
我々は,早期に脆弱な神経細胞を戦略的に中和する新しい防御機構であるNeuroShield-ViTを開発し,対向効果のカスケードを防止する。
我々の研究結果は、視力変換器が敵の攻撃に対して堅牢性を高めるための有望なアプローチを提供しながら、敵の効果がViT層を通してどのように伝播するかに新たな光を当てた。
論文 参考訳(メタデータ) (2025-02-07T05:58:16Z) - Hide in Thicket: Generating Imperceptible and Rational Adversarial
Perturbations on 3D Point Clouds [62.94859179323329]
3Dポイントクラウド分類のための点操作に基づくアドリアック手法により、3Dモデルの脆弱性を明らかにした。
そこで本研究では,2段階の攻撃領域探索を行うHT-ADV法を提案する。
我々は,良性再サンプリングと良性剛性変換を用いることで,不受容性への犠牲がほとんどなく,身体的敵意の強さをさらに高めることができることを示唆する。
論文 参考訳(メタデータ) (2024-03-08T12:08:06Z) - AutoAugment Input Transformation for Highly Transferable Targeted
Attacks [9.970326131028159]
我々は,AutoAugment Input Transformation (AAIT) と呼ばれる新たな敵攻撃を提案する。
AAITは、様々な操作からなる変換空間から最適な変換ポリシーを探索する。
検出された最適な変換ポリシーを使用して敵の例を作成し、標的攻撃における敵の移動可能性を高める。
論文 参考訳(メタデータ) (2023-12-21T12:49:36Z) - The Efficacy of Transformer-based Adversarial Attacks in Security
Domains [0.7156877824959499]
システムディフェンダーの対向サンプルに対する変換器のロバスト性およびシステムアタッカーに対する対向強度を評価する。
我々の研究は、セキュリティ領域におけるモデルの攻撃と防御のためにトランスフォーマーアーキテクチャを研究することの重要性を強調している。
論文 参考訳(メタデータ) (2023-10-17T21:45:23Z) - Improving Adversarial Robustness to Sensitivity and Invariance Attacks
with Deep Metric Learning [80.21709045433096]
対向ロバスト性の標準的な方法は、サンプルを最小に摂動させることによって作られたサンプルに対して防御する枠組みを仮定する。
距離学習を用いて、最適輸送問題として逆正則化をフレーム化する。
予備的な結果から, 変分摂動の規則化は, 変分防御と敏感防御の両方を改善することが示唆された。
論文 参考訳(メタデータ) (2022-11-04T13:54:02Z) - Frequency Domain Model Augmentation for Adversarial Attack [91.36850162147678]
ブラックボックス攻撃の場合、代用モデルと被害者モデルの間のギャップは通常大きい。
そこで本研究では,通常の訓練モデルと防衛モデルの両方に対して,より伝達可能な対角線モデルを構築するための新しいスペクトルシミュレーション攻撃を提案する。
論文 参考訳(メタデータ) (2022-07-12T08:26:21Z) - Towards Defending against Adversarial Examples via Attack-Invariant
Features [147.85346057241605]
ディープニューラルネットワーク(DNN)は敵の雑音に弱い。
敵の強靭性は、敵の例を利用して改善することができる。
目に見えない種類の敵の例に基づいて訓練されたモデルは、一般的に、目に見えない種類の敵の例にうまく一般化できない。
論文 参考訳(メタデータ) (2021-06-09T12:49:54Z) - Adaptive Feature Alignment for Adversarial Training [56.17654691470554]
CNNは通常、敵攻撃に対して脆弱であり、セキュリティに敏感なアプリケーションに脅威をもたらす。
任意の攻撃強度の特徴を生成するための適応的特徴アライメント(AFA)を提案する。
本手法は任意の攻撃強度の特徴を自動的に整列するように訓練されている。
論文 参考訳(メタデータ) (2021-05-31T17:01:05Z) - Online Alternate Generator against Adversarial Attacks [144.45529828523408]
ディープラーニングモデルは、実際の画像に準知覚可能なノイズを加えることによって合成される敵の例に非常に敏感である。
対象ネットワークのパラメータをアクセスしたり変更したりする必要のない,ポータブルな防御手法であるオンライン代替ジェネレータを提案する。
提案手法は,入力画像のスクラッチから別の画像をオンライン合成することで,対向雑音を除去・破壊する代わりに機能する。
論文 参考訳(メタデータ) (2020-09-17T07:11:16Z) - TREND: Transferability based Robust ENsemble Design [6.663641564969944]
本稿では, ネットワークアーキテクチャ, 入力, 重量, アクティベーションの量子化が, 対向サンプルの転送性に及ぼす影響について検討する。
本研究では,ソースとターゲット間の入力量子化によってトランスファービリティが著しく阻害されていることを示す。
我々は、これに対抗するために、新しい最先端のアンサンブル攻撃を提案する。
論文 参考訳(メタデータ) (2020-08-04T13:38:14Z) - Adversarial Defense by Latent Style Transformations [20.78877614953599]
本研究では、不審な入力を検出することにより、高解像度画像に対する敵攻撃に対する攻撃非依存の防御について検討する。
我々のアプローチの背景にある直感は、通常の画像の本質的な特徴は一般に非意味的なスタイル変換と一致しているということである。
論文 参考訳(メタデータ) (2020-06-17T07:56:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。