論文の概要: Scaling Laws in Linear Regression: Compute, Parameters, and Data
- arxiv url: http://arxiv.org/abs/2406.08466v2
- Date: Tue, 29 Oct 2024 18:10:27 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-31 14:25:21.143398
- Title: Scaling Laws in Linear Regression: Compute, Parameters, and Data
- Title(参考訳): 線形回帰におけるスケーリング法則:計算、パラメータ、データ
- Authors: Licong Lin, Jingfeng Wu, Sham M. Kakade, Peter L. Bartlett, Jason D. Lee,
- Abstract要約: 無限次元線形回帰セットアップにおけるスケーリング法則の理論について検討する。
テストエラーの再現可能な部分は$Theta(-(a-1) + N-(a-1)/a)$であることを示す。
我々の理論は経験的ニューラルスケーリング法則と一致し、数値シミュレーションによって検証される。
- 参考スコア(独自算出の注目度): 86.48154162485712
- License:
- Abstract: Empirically, large-scale deep learning models often satisfy a neural scaling law: the test error of the trained model improves polynomially as the model size and data size grow. However, conventional wisdom suggests the test error consists of approximation, bias, and variance errors, where the variance error increases with model size. This disagrees with the general form of neural scaling laws, which predict that increasing model size monotonically improves performance. We study the theory of scaling laws in an infinite dimensional linear regression setup. Specifically, we consider a model with $M$ parameters as a linear function of sketched covariates. The model is trained by one-pass stochastic gradient descent (SGD) using $N$ data. Assuming the optimal parameter satisfies a Gaussian prior and the data covariance matrix has a power-law spectrum of degree $a>1$, we show that the reducible part of the test error is $\Theta(M^{-(a-1)} + N^{-(a-1)/a})$. The variance error, which increases with $M$, is dominated by the other errors due to the implicit regularization of SGD, thus disappearing from the bound. Our theory is consistent with the empirical neural scaling laws and verified by numerical simulation.
- Abstract(参考訳): 経験的に、大規模なディープラーニングモデルは、しばしばニューラルスケーリング法則を満たす:訓練されたモデルのテストエラーは、モデルのサイズとデータサイズが大きくなるにつれて多項式的に改善する。
しかし、従来の知恵では、テストエラーは近似、バイアス、分散エラーから成り、モデルサイズとともに分散エラーが増加することを示唆している。
これは、モデルサイズの増加がパフォーマンスを単調に改善すると予想する、一般的なニューラルスケーリング法則とは一致しない。
無限次元線形回帰セットアップにおけるスケーリング法則の理論について検討する。
具体的には、$M$パラメータを持つモデルを、スケッチされた共変数の線形関数とみなす。
このモデルは1パス確率勾配勾配(SGD)でN$データを用いて訓練される。
最適パラメータがガウス事前を満たすと仮定し、データ共分散行列が次数$a>1$の有理スペクトルを持ち、テスト誤差の既約部分は$\Theta(M^{-(a-1)} + N^{-(a-1)/a})$であることを示す。
M$で増加する分散誤差は、SGDの暗黙の正規化により他の誤差に支配され、したがって境界から消える。
我々の理論は経験的ニューラルスケーリング法則と一致し、数値シミュレーションによって検証される。
関連論文リスト
- Beyond Closure Models: Learning Chaotic-Systems via Physics-Informed Neural Operators [78.64101336150419]
カオスシステムの長期的挙動を予測することは、気候モデリングなどの様々な応用に不可欠である。
このような完全解法シミュレーションに対する別のアプローチは、粗いグリッドを使用して、時間テキストモデルによってエラーを修正することである。
この制限を克服する物理インフォームド・ニューラル演算子(PINO)を用いたエンド・ツー・エンドの学習手法を提案する。
論文 参考訳(メタデータ) (2024-08-09T17:05:45Z) - Scaling and renormalization in high-dimensional regression [72.59731158970894]
本稿では,様々な高次元リッジ回帰モデルの訓練および一般化性能の簡潔な導出について述べる。
本稿では,物理と深層学習の背景を持つ読者を対象に,これらのトピックに関する最近の研究成果の紹介とレビューを行う。
論文 参考訳(メタデータ) (2024-05-01T15:59:00Z) - Asymptotics of Random Feature Regression Beyond the Linear Scaling
Regime [22.666759017118796]
機械学習の最近の進歩は、トレーニングデータの近くにトレーニングされた過度にパラメータ化されたモデルを使用することによって達成されている。
モデル複雑性と一般化はパラメータ数$p$にどのように依存するか?
特に、RFRRは近似と一般化パワーの直感的なトレードオフを示す。
論文 参考訳(メタデータ) (2024-03-13T00:59:25Z) - A Dynamical Model of Neural Scaling Laws [79.59705237659547]
ネットワークトレーニングと一般化の解決可能なモデルとして,勾配降下で訓練されたランダムな特徴モデルを分析する。
我々の理論は、データの繰り返し再利用により、トレーニングとテスト損失のギャップが徐々に増大することを示している。
論文 参考訳(メタデータ) (2024-02-02T01:41:38Z) - Effective Minkowski Dimension of Deep Nonparametric Regression: Function
Approximation and Statistical Theories [70.90012822736988]
ディープ非パラメトリック回帰に関する既存の理論は、入力データが低次元多様体上にある場合、ディープニューラルネットワークは本質的なデータ構造に適応できることを示した。
本稿では,$mathcalS$で表される$mathbbRd$のサブセットに入力データが集中するという緩和された仮定を導入する。
論文 参考訳(メタデータ) (2023-06-26T17:13:31Z) - Dimension free ridge regression [10.434481202633458]
我々は、リッジ回帰のバイアスとばらつきの観点から、すなわちデータ上のリッジ回帰を再考し、等価なシーケンスモデルのバイアスとばらつきの観点から、リッジ回帰のバイアスとばらつきを考察する。
新しい応用として、定期的に変化するスペクトルを持つヒルベルト共変量に対して、完全に明示的で鋭い尾根回帰特性を得る。
論文 参考訳(メタデータ) (2022-10-16T16:01:05Z) - Precise Learning Curves and Higher-Order Scaling Limits for Dot Product
Kernel Regression [41.48538038768993]
本稿では,ドット積カーネルのカーネルリッジ回帰問題に焦点をあてる。
我々は、任意の整数$r$に対して$m approx dr/r!$が常に学習曲線のピークを観測し、複数のサンプルワイズと非自明な振る舞いを複数のスケールで達成する。
論文 参考訳(メタデータ) (2022-05-30T04:21:31Z) - $p$-Generalized Probit Regression and Scalable Maximum Likelihood
Estimation via Sketching and Coresets [74.37849422071206]
本稿では, 2次応答に対する一般化線形モデルである,$p$一般化プロビット回帰モデルについて検討する。
p$の一般化されたプロビット回帰に対する最大可能性推定器は、大容量データ上で$(1+varepsilon)$の係数まで効率的に近似できることを示す。
論文 参考訳(メタデータ) (2022-03-25T10:54:41Z) - Estimating Stochastic Linear Combination of Non-linear Regressions
Efficiently and Scalably [23.372021234032363]
サブサンプルサイズが大きくなると、推定誤差が過度に犠牲になることを示す。
私たちの知る限りでは、線形テキスト+確率モデルが保証される最初の研究です。
論文 参考訳(メタデータ) (2020-10-19T07:15:38Z) - A Neural Scaling Law from the Dimension of the Data Manifold [8.656787568717252]
データが豊富であれば、よく訓練されたニューラルネットワークによって達成される損失は、ネットワークパラメータの数でN-alpha$のパワーロープロットとしてスケールする。
スケーリングの法則は、ニューラルモデルが本質的に内在次元$d$のデータ多様体上で回帰を行えば説明できる。
この単純な理論は、スケーリング指数が、クロスエントロピーと平均二乗誤差損失に対して$alpha approx 4/d$となることを予測している。
論文 参考訳(メタデータ) (2020-04-22T19:16:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。