PAL: Pluralistic Alignment Framework for Learning from Heterogeneous Preferences
- URL: http://arxiv.org/abs/2406.08469v1
- Date: Wed, 12 Jun 2024 17:54:54 GMT
- Title: PAL: Pluralistic Alignment Framework for Learning from Heterogeneous Preferences
- Authors: Daiwei Chen, Yi Chen, Aniket Rege, Ramya Korlakai Vinayak,
- Abstract summary: We propose PAL, a framework to model human preference complementary to existing pretraining strategies.
We show that PAL achieves competitive reward model accuracy compared to strong baselines.
- Score: 6.398937923320069
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large foundation models pretrained on raw web-scale data are not readily deployable without additional step of extensive alignment to human preferences. Such alignment is typically done by collecting large amounts of pairwise comparisons from humans ("Do you prefer output A or B?") and learning a reward model or a policy with the Bradley-Terry-Luce (BTL) model as a proxy for a human's underlying implicit preferences. These methods generally suffer from assuming a universal preference shared by all humans, which lacks the flexibility of adapting to plurality of opinions and preferences. In this work, we propose PAL, a framework to model human preference complementary to existing pretraining strategies, which incorporates plurality from the ground up. We propose using the ideal point model as a lens to view alignment using preference comparisons. Together with our novel reformulation and using mixture modeling, our framework captures the plurality of population preferences while simultaneously learning a common preference latent space across different preferences, which can few-shot generalize to new, unseen users. Our approach enables us to use the penultimate-layer representation of large foundation models and simple MLP layers to learn reward functions that are on-par with the existing large state-of-the-art reward models, thereby enhancing efficiency of reward modeling significantly. We show that PAL achieves competitive reward model accuracy compared to strong baselines on 1) Language models with Summary dataset ; 2) Image Generative models with Pick-a-Pic dataset ; 3) A new semisynthetic heterogeneous dataset generated using Anthropic Personas. Finally, our experiments also highlight the shortcoming of current preference datasets that are created using rigid rubrics which wash away heterogeneity, and call for more nuanced data collection approaches.
Related papers
- Calibrated Multi-Preference Optimization for Aligning Diffusion Models [92.90660301195396]
Calibrated Preference Optimization (CaPO) is a novel method to align text-to-image (T2I) diffusion models.
CaPO incorporates the general preference from multiple reward models without human annotated data.
Experimental results show that CaPO consistently outperforms prior methods.
arXiv Detail & Related papers (2025-02-04T18:59:23Z) - Personalized Preference Fine-tuning of Diffusion Models [75.22218338096316]
We introduce PPD, a multi-reward optimization objective that aligns diffusion models with personalized preferences.
With PPD, a diffusion model learns the individual preferences of a population of users in a few-shot way.
Our approach achieves an average win rate of 76% over Stable Cascade, generating images that more accurately reflect specific user preferences.
arXiv Detail & Related papers (2025-01-11T22:38:41Z) - Few-shot Steerable Alignment: Adapting Rewards and LLM Policies with Neural Processes [50.544186914115045]
Large language models (LLMs) are increasingly embedded in everyday applications.
Ensuring their alignment with the diverse preferences of individual users has become a critical challenge.
We present a novel framework for few-shot steerable alignment.
arXiv Detail & Related papers (2024-12-18T16:14:59Z) - ComPO: Community Preferences for Language Model Personalization [122.54846260663922]
ComPO is a method to personalize preference optimization in language models.
We collect and release ComPRed, a question answering dataset with community-level preferences from Reddit.
arXiv Detail & Related papers (2024-10-21T14:02:40Z) - Beyond Bradley-Terry Models: A General Preference Model for Language Model Alignment [51.14207112118503]
We introduce preference embedding, an approach that embeds responses into a latent space to capture preferences efficiently.
We also propose preference score-based General Preference Optimization (GPO), which generalizes reward-based reinforcement learning from human feedback.
Our method may enhance the alignment of foundation models with nuanced human values.
arXiv Detail & Related papers (2024-10-03T04:22:55Z) - Direct Preference Optimization With Unobserved Preference Heterogeneity [16.91835461818937]
This paper presents a new method to align generative models with varied human preferences.
We propose an Expectation-Maximization adaptation to DPO, generating a mixture of models based on latent preference types of the annotators.
Our algorithms leverage the simplicity of DPO while accommodating diverse preferences.
arXiv Detail & Related papers (2024-05-23T21:25:20Z) - Dataless Knowledge Fusion by Merging Weights of Language Models [51.8162883997512]
Fine-tuning pre-trained language models has become the prevalent paradigm for building downstream NLP models.
This creates a barrier to fusing knowledge across individual models to yield a better single model.
We propose a dataless knowledge fusion method that merges models in their parameter space.
arXiv Detail & Related papers (2022-12-19T20:46:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.