Direct Preference Optimization With Unobserved Preference Heterogeneity
- URL: http://arxiv.org/abs/2405.15065v1
- Date: Thu, 23 May 2024 21:25:20 GMT
- Title: Direct Preference Optimization With Unobserved Preference Heterogeneity
- Authors: Keertana Chidambaram, Karthik Vinay Seetharaman, Vasilis Syrgkanis,
- Abstract summary: This paper presents a new method to align generative models with varied human preferences.
We propose an Expectation-Maximization adaptation to DPO, generating a mixture of models based on latent preference types of the annotators.
Our algorithms leverage the simplicity of DPO while accommodating diverse preferences.
- Score: 16.91835461818937
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: RLHF has emerged as a pivotal step in aligning language models with human objectives and values. It typically involves learning a reward model from human preference data and then using reinforcement learning to update the generative model accordingly. Conversely, Direct Preference Optimization (DPO) directly optimizes the generative model with preference data, skipping reinforcement learning. However, both RLHF and DPO assume uniform preferences, overlooking the reality of diverse human annotators. This paper presents a new method to align generative models with varied human preferences. We propose an Expectation-Maximization adaptation to DPO, generating a mixture of models based on latent preference types of the annotators. We then introduce a min-max regret ensemble learning model to produce a single generative method to minimize worst-case regret among annotator subgroups with similar latent factors. Our algorithms leverage the simplicity of DPO while accommodating diverse preferences. Experimental results validate the effectiveness of our approach in producing equitable generative policies.
Related papers
- ComPO: Community Preferences for Language Model Personalization [122.54846260663922]
ComPO is a method to personalize preference optimization in language models.
We collect and release ComPRed, a question answering dataset with community-level preferences from Reddit.
arXiv Detail & Related papers (2024-10-21T14:02:40Z) - PAL: Pluralistic Alignment Framework for Learning from Heterogeneous Preferences [6.398937923320069]
We propose PAL, a framework to model human preference complementary to existing pretraining strategies.
We show that PAL achieves competitive reward model accuracy compared to strong baselines.
arXiv Detail & Related papers (2024-06-12T17:54:54Z) - Preference Alignment with Flow Matching [23.042382086241364]
Preference Flow Matching (PFM) is a new framework for preference-based reinforcement learning (PbRL)
It streamlines the integration of preferences into an arbitrary class of pre-trained models.
We provide theoretical insights that support our method's alignment with standard PbRL objectives.
arXiv Detail & Related papers (2024-05-30T08:16:22Z) - Preference Learning Algorithms Do Not Learn Preference Rankings [62.335733662381884]
We study the conventional wisdom that preference learning trains models to assign higher likelihoods to more preferred outputs than less preferred outputs.
We find that most state-of-the-art preference-tuned models achieve a ranking accuracy of less than 60% on common preference datasets.
arXiv Detail & Related papers (2024-05-29T21:29:44Z) - Robust Preference Optimization through Reward Model Distillation [68.65844394615702]
Language model (LM) post-training involves maximizing a reward function that is derived from preference annotations.
DPO is a popular offline alignment method that trains a policy directly on preference data without the need to train a reward model or apply reinforcement learning.
We analyze this phenomenon and propose distillation to get a better proxy for the true preference distribution over generation pairs.
arXiv Detail & Related papers (2024-05-29T17:39:48Z) - Multi-Reference Preference Optimization for Large Language Models [56.84730239046117]
We introduce a novel closed-form formulation for direct preference optimization using multiple reference models.
The resulting algorithm, Multi-Reference Preference Optimization (MRPO), leverages broader prior knowledge from diverse reference models.
Our experiments demonstrate that LLMs finetuned with MRPO generalize better in various preference data, regardless of data scarcity or abundance.
arXiv Detail & Related papers (2024-05-26T00:29:04Z) - Active Preference Learning for Large Language Models [12.093302163058436]
We develop an active learning strategy for DPO to make better use of preference labels.
We propose a practical acquisition function for prompt/completion pairs based on the predictive entropy of the language model.
We demonstrate how our approach improves both the rate of learning and final performance of fine-tuning on pairwise preference data.
arXiv Detail & Related papers (2024-02-12T23:09:00Z) - Secrets of RLHF in Large Language Models Part II: Reward Modeling [134.97964938009588]
We introduce a series of novel methods to mitigate the influence of incorrect and ambiguous preferences in the dataset.
We also introduce contrastive learning to enhance the ability of reward models to distinguish between chosen and rejected responses.
arXiv Detail & Related papers (2024-01-11T17:56:59Z) - Diffusion Model Alignment Using Direct Preference Optimization [103.2238655827797]
Diffusion-DPO is a method to align diffusion models to human preferences by directly optimizing on human comparison data.
We fine-tune the base model of the state-of-the-art Stable Diffusion XL (SDXL)-1.0 model with Diffusion-DPO.
We also develop a variant that uses AI feedback and has comparable performance to training on human preferences.
arXiv Detail & Related papers (2023-11-21T15:24:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.