論文の概要: RILe: Reinforced Imitation Learning
- arxiv url: http://arxiv.org/abs/2406.08472v1
- Date: Wed, 12 Jun 2024 17:56:31 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-13 15:27:35.120630
- Title: RILe: Reinforced Imitation Learning
- Title(参考訳): RILe:強化模倣学習
- Authors: Mert Albaba, Sammy Christen, Christoph Gebhardt, Thomas Langarek, Michael J. Black, Otmar Hilliges,
- Abstract要約: Imitation Learning と Inverse Reinforcement Learning の逆の変種は、判別器を介して専門家によるデモンストレーションからポリシーを学ぶことで代替手段を提供する。
本稿では,不完全なデータと効率の両面において頑健性を実現する教師学生システムであるRILeを提案する。
- 参考スコア(独自算出の注目度): 60.63173816209543
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Reinforcement Learning has achieved significant success in generating complex behavior but often requires extensive reward function engineering. Adversarial variants of Imitation Learning and Inverse Reinforcement Learning offer an alternative by learning policies from expert demonstrations via a discriminator. Employing discriminators increases their data- and computational efficiency over the standard approaches; however, results in sensitivity to imperfections in expert data. We propose RILe, a teacher-student system that achieves both robustness to imperfect data and efficiency. In RILe, the student learns an action policy while the teacher dynamically adjusts a reward function based on the student's performance and its alignment with expert demonstrations. By tailoring the reward function to both performance of the student and expert similarity, our system reduces dependence on the discriminator and, hence, increases robustness against data imperfections. Experiments show that RILe outperforms existing methods by 2x in settings with limited or noisy expert data.
- Abstract(参考訳): 強化学習は複雑な振る舞いを生成する上で大きな成功を収めてきたが、大きな報酬関数エンジニアリングを必要とすることが多い。
Imitation Learning と Inverse Reinforcement Learning の逆の変種は、判別器を介して専門家によるデモンストレーションからポリシーを学ぶことで代替手段を提供する。
識別器の使用は、標準的なアプローチよりもデータと計算効率を高めるが、専門家データにおける不完全性に敏感になる。
本稿では,不完全なデータと効率の両面において頑健性を実現する教師学生システムであるRILeを提案する。
RILeでは、教師が生徒のパフォーマンスと専門家によるデモンストレーションとの整合性に基づいて報酬関数を動的に調整する間、生徒はアクションポリシーを学習する。
学生のパフォーマンスと専門家の類似性の両方に報酬関数を調整することにより、判別器への依存を減らし、データ不完全性に対する堅牢性を高める。
実験の結果、RILeは制限のある専門家データやノイズの多い専門家データで、既存のメソッドを2倍の性能で上回ることがわかった。
関連論文リスト
- CLARE: Conservative Model-Based Reward Learning for Offline Inverse
Reinforcement Learning [26.05184273238923]
この研究は、オフライン逆強化学習(IRL)における大きな課題に取り組むことを目的としている。
我々は「保守主義」を学習報酬関数に統合することでオフラインIRLを効率的に解くアルゴリズム(CLARE)を考案した。
我々の理論的分析は、学習した方針と専門家の政策の間のリターンギャップに上限を与える。
論文 参考訳(メタデータ) (2023-02-09T17:16:29Z) - Internally Rewarded Reinforcement Learning [22.01249652558878]
政策学習の報奨信号が内部報酬モデルによって生成される強化学習のクラスについて検討する。
提案した報奨関数は,報奨音の影響を低減し,トレーニング過程を一定に安定化させることができることを示す。
論文 参考訳(メタデータ) (2023-02-01T06:25:46Z) - Distantly-Supervised Named Entity Recognition with Adaptive Teacher
Learning and Fine-grained Student Ensemble [56.705249154629264]
NERモデルの堅牢性を改善するために,自己学習型教員学生フレームワークを提案する。
本稿では,2つの教員ネットワークからなる適応型教員学習を提案する。
微粒な学生アンサンブルは、教師モデルの各フラグメントを、生徒の対応するフラグメントの時間移動平均で更新し、各モデルフラグメントのノイズに対する一貫した予測を強化する。
論文 参考訳(メタデータ) (2022-12-13T12:14:09Z) - Improving GANs with A Dynamic Discriminator [106.54552336711997]
我々は、オンザフライで調整可能な判別器は、そのような時間変化に適応できると論じる。
総合的な実証研究により、提案したトレーニング戦略がDynamicDと呼ばれ、追加のコストやトレーニング目標を発生させることなく、合成性能を向上させることが確認された。
論文 参考訳(メタデータ) (2022-09-20T17:57:33Z) - Basis for Intentions: Efficient Inverse Reinforcement Learning using
Past Experience [89.30876995059168]
逆強化学習(IRL) - エージェントの報酬関数をその振る舞いを観察することから推測する。
本稿では、エージェントの報酬関数を観察することのできないIRLの問題に対処する。
論文 参考訳(メタデータ) (2022-08-09T17:29:49Z) - Transferable Reward Learning by Dynamics-Agnostic Discriminator Ensemble [8.857776147129464]
専門家によるデモンストレーションから報酬関数を復元することは、強化学習における根本的な問題である。
本研究では、状態行動と状態のみの報酬関数の両方を学習できる動的非依存型識別器・アンサンブル報酬学習法を提案する。
論文 参考訳(メタデータ) (2022-06-01T05:16:39Z) - ReIL: A Framework for Reinforced Intervention-based Imitation Learning [3.0846824529023387]
Reinforced Intervention-based Learning (ReIL) は、一般的な介入に基づく学習アルゴリズムとマルチタスク模倣学習モデルからなるフレームワークである。
実世界の移動ロボットナビゲーションの課題による実験結果から、ReILは性能の劣化に悩まされることなく、緩やかな監督補正から素早く学習できることが示唆された。
論文 参考訳(メタデータ) (2022-03-29T09:30:26Z) - SURF: Semi-supervised Reward Learning with Data Augmentation for
Feedback-efficient Preference-based Reinforcement Learning [168.89470249446023]
我々は、大量のラベルなしサンプルとデータ拡張を利用する半教師付き報酬学習フレームワークSURFを提案する。
報奨学習にラベルのないサンプルを活用するために,選好予測器の信頼性に基づいてラベルのないサンプルの擬似ラベルを推定する。
本実験は, ロボット操作作業における嗜好に基づく手法のフィードバック効率を有意に向上させることを実証した。
論文 参考訳(メタデータ) (2022-03-18T16:50:38Z) - Off-Policy Adversarial Inverse Reinforcement Learning [0.0]
Adversarial Imitation Learning (AIL)は、強化学習(RL)におけるアルゴリズムのクラスである。
本稿では, サンプル効率が良く, 模倣性能も良好であるOff-policy-AIRLアルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-05-03T16:51:40Z) - Learning Sparse Rewarded Tasks from Sub-Optimal Demonstrations [78.94386823185724]
模倣学習は、既存の専門家のデモンストレーションを活用することで、スパース・リワードされたタスクで効果的に学習する。
実際には、十分な量の専門家によるデモンストレーションを集めることは、違法にコストがかかる。
限られた数の準最適実演に限り、最適性能を(ほぼ)達成できる自己適応学習(SAIL)を提案する。
論文 参考訳(メタデータ) (2020-04-01T15:57:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。