Enhanced Anomaly Detection in Automotive Systems Using SAAD: Statistical Aggregated Anomaly Detection
- URL: http://arxiv.org/abs/2406.08516v1
- Date: Tue, 11 Jun 2024 12:41:24 GMT
- Title: Enhanced Anomaly Detection in Automotive Systems Using SAAD: Statistical Aggregated Anomaly Detection
- Authors: Dacian Goina, Eduard Hogea, George Maties,
- Abstract summary: This paper presents a novel anomaly detection methodology termed Statistical Aggregated Anomaly Detection (SAAD)
The SAAD approach integrates advanced statistical techniques with machine learning, and its efficacy is demonstrated through validation on real sensor data from a Hardware-in-the-Loop (HIL) environment within the automotive domain.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper presents a novel anomaly detection methodology termed Statistical Aggregated Anomaly Detection (SAAD). The SAAD approach integrates advanced statistical techniques with machine learning, and its efficacy is demonstrated through validation on real sensor data from a Hardware-in-the-Loop (HIL) environment within the automotive domain. The key innovation of SAAD lies in its ability to significantly enhance the accuracy and robustness of anomaly detection when combined with Fully Connected Networks (FCNs) augmented by dropout layers. Comprehensive experimental evaluations indicate that the standalone statistical method achieves an accuracy of 72.1%, whereas the deep learning model alone attains an accuracy of 71.5%. In contrast, the aggregated method achieves a superior accuracy of 88.3% and an F1 score of 0.921, thereby outperforming the individual models. These results underscore the effectiveness of SAAD, demonstrating its potential for broad application in various domains, including automotive systems.
Related papers
- Predictive Crash Analytics for Traffic Safety using Deep Learning [0.0]
This research presents an innovative approach to traffic safety analysis through the integration of ensemble learning methods and multi-modal data fusion.
Our primary contribution lies in developing a hierarchical severity classification system that combines spatial-temporal crash patterns with environmental conditions.
We introduce a novel feature engineering technique that integrates crash location data with incident reports and weather conditions, achieving 92.4% accuracy in risk prediction and 89.7% precision in hotspot identification.
arXiv Detail & Related papers (2025-02-09T05:00:46Z) - Improved Anomaly Detection through Conditional Latent Space VAE Ensembles [49.1574468325115]
Conditional Latent space Variational Autoencoder (CL-VAE) improved pre-processing for anomaly detection on data with known inlier classes and unknown outlier classes.
Model shows increased accuracy in anomaly detection, achieving an AUC of 97.4% on the MNIST dataset.
In addition, the CL-VAE shows increased benefits from ensembling, a more interpretable latent space, and an increased ability to learn patterns in complex data with limited model sizes.
arXiv Detail & Related papers (2024-10-16T07:48:53Z) - AUTO: Adaptive Outlier Optimization for Online Test-Time OOD Detection [81.49353397201887]
Out-of-distribution (OOD) detection is crucial to deploying machine learning models in open-world applications.
We introduce a novel paradigm called test-time OOD detection, which utilizes unlabeled online data directly at test time to improve OOD detection performance.
We propose adaptive outlier optimization (AUTO), which consists of an in-out-aware filter, an ID memory bank, and a semantically-consistent objective.
arXiv Detail & Related papers (2023-03-22T02:28:54Z) - A Computer Vision Enabled damage detection model with improved YOLOv5
based on Transformer Prediction Head [0.0]
Current state-of-the-art deep learning (DL)-based damage detection models often lack superior feature extraction capability in complex and noisy environments.
DenseSPH-YOLOv5 is a real-time DL-based high-performance damage detection model where DenseNet blocks have been integrated with the backbone.
DenseSPH-YOLOv5 obtains a mean average precision (mAP) value of 85.25 %, F1-score of 81.18 %, and precision (P) value of 89.51 % outperforming current state-of-the-art models.
arXiv Detail & Related papers (2023-03-07T22:53:36Z) - Predicted Embedding Power Regression for Large-Scale Out-of-Distribution
Detection [77.1596426383046]
We develop a novel approach that calculates the probability of the predicted class label based on label distributions learned during the training process.
Our method performs better than current state-of-the-art methods with only a negligible increase in compute cost.
arXiv Detail & Related papers (2023-03-07T18:28:39Z) - Practical Recommendations for the Design of Automatic Fault Detection
Algorithms Based on Experiments with Field Monitoring Data [0.0]
Automatic fault detection (AFD) is a key technology to optimize the Operation and Maintenance of photovoltaic (PV) systems portfolios.
In this study, a series of AFD algorithms have been tested under real operating conditions, using monitoring data collected over 58 months on 80 rooftop-type PV systems installed in Germany.
The results shown that this type of AFD algorithm have the potential to detect up to 82.8% of the energy losses with specificity above 90%.
arXiv Detail & Related papers (2022-03-02T13:43:17Z) - Leveraging Unlabeled Data to Predict Out-of-Distribution Performance [63.740181251997306]
Real-world machine learning deployments are characterized by mismatches between the source (training) and target (test) distributions.
In this work, we investigate methods for predicting the target domain accuracy using only labeled source data and unlabeled target data.
We propose Average Thresholded Confidence (ATC), a practical method that learns a threshold on the model's confidence, predicting accuracy as the fraction of unlabeled examples.
arXiv Detail & Related papers (2022-01-11T23:01:12Z) - Provable Guarantees for Understanding Out-of-distribution Detection [13.36367318623728]
We develop an analytical framework that characterizes and unifies the theoretical understanding for OOD detection.
Our framework motivates a novel OOD detection method for neural networks, GEM, which demonstrates both theoretical and empirical superiority.
arXiv Detail & Related papers (2021-12-01T19:18:43Z) - Towards Reducing Labeling Cost in Deep Object Detection [61.010693873330446]
We propose a unified framework for active learning, that considers both the uncertainty and the robustness of the detector.
Our method is able to pseudo-label the very confident predictions, suppressing a potential distribution drift.
arXiv Detail & Related papers (2021-06-22T16:53:09Z) - Anomaly Detection Based on Selection and Weighting in Latent Space [73.01328671569759]
We propose a novel selection-and-weighting-based anomaly detection framework called SWAD.
Experiments on both benchmark and real-world datasets have shown the effectiveness and superiority of SWAD.
arXiv Detail & Related papers (2021-03-08T10:56:38Z) - piSAAC: Extended notion of SAAC feature selection novel method for
discrimination of Enzymes model using different machine learning algorithm [13.921567068182132]
Novel split amino acid composition model named piSAAC is proposed.
Protein sequence is discretized in equal and balanced terminus to fully evaluate the intrinsic correlation properties of the sequence.
arXiv Detail & Related papers (2020-12-16T03:45:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.