An Explainable AI-Enhanced Machine Learning Approach for Cardiovascular Disease Detection and Risk Assessment
- URL: http://arxiv.org/abs/2507.11185v1
- Date: Tue, 15 Jul 2025 10:38:38 GMT
- Title: An Explainable AI-Enhanced Machine Learning Approach for Cardiovascular Disease Detection and Risk Assessment
- Authors: Md. Emon Akter Sourov, Md. Sabbir Hossen, Pabon Shaha, Mohammad Minoar Hossain, Md Sadiq Iqbal,
- Abstract summary: Heart disease remains a major global health concern.<n>Traditional diagnostic methods fail to accurately identify and manage heart disease risks.<n>Machine learning has the potential to significantly enhance the accuracy, efficiency, and speed of heart disease diagnosis.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Heart disease remains a major global health concern, particularly in regions with limited access to medical resources and diagnostic facilities. Traditional diagnostic methods often fail to accurately identify and manage heart disease risks, leading to adverse outcomes. Machine learning has the potential to significantly enhance the accuracy, efficiency, and speed of heart disease diagnosis. In this study, we proposed a comprehensive framework that combines classification models for heart disease detection and regression models for risk prediction. We employed the Heart Disease dataset, which comprises 1,035 cases. To address the issue of class imbalance, the Synthetic Minority Oversampling Technique (SMOTE) was applied, resulting in the generation of an additional 100,000 synthetic data points. Performance metrics, including accuracy, precision, recall, F1-score, R2, MSE, RMSE, and MAE, were used to evaluate the model's effectiveness. Among the classification models, Random Forest emerged as the standout performer, achieving an accuracy of 97.2% on real data and 97.6% on synthetic data. For regression tasks, Linear Regression demonstrated the highest R2 values of 0.992 and 0.984 on real and synthetic datasets, respectively, with the lowest error metrics. Additionally, Explainable AI techniques were employed to enhance the interpretability of the models. This study highlights the potential of machine learning to revolutionize heart disease diagnosis and risk prediction, thereby facilitating early intervention and enhancing clinical decision-making.
Related papers
- Predicting Length of Stay in Neurological ICU Patients Using Classical Machine Learning and Neural Network Models: A Benchmark Study on MIMIC-IV [49.1574468325115]
This study explores multiple ML approaches for predicting LOS in ICU specifically for the patients with neurological diseases based on the MIMIC-IV dataset.<n>The evaluated models include classic ML algorithms (K-Nearest Neighbors, Random Forest, XGBoost and CatBoost) and Neural Networks (LSTM, BERT and Temporal Fusion Transformer)
arXiv Detail & Related papers (2025-05-23T14:06:42Z) - Machine Learning Meets Transparency in Osteoporosis Risk Assessment: A Comparative Study of ML and Explainability Analysis [0.0]
The present research tackles the difficulty of predicting osteoporosis risk via machine learning (ML) approaches.<n>XGBoost had the greatest accuracy (91%) among the evaluated models, surpassing others in precision (0.92), recall (0.91), and F1-score (0.90)<n>The study indicates that age is the primary determinant in forecasting osteoporosis risk, followed by hormonal alterations and familial history.
arXiv Detail & Related papers (2025-05-01T09:05:02Z) - Stroke Disease Classification Using Machine Learning with Feature Selection Techniques [1.6044444452278062]
Heart disease remains a leading cause of morbidity and mortality worldwide.<n>We have developed a novel voting system with feature selection techniques to advance heart disease classification.<n>XGBoost demonstrated exceptional performance, achieving 99% accuracy, precision, F1-Score, 98% recall, and 100% ROC AUC.
arXiv Detail & Related papers (2025-04-01T07:16:49Z) - Congenital Heart Disease Classification Using Phonocardiograms: A Scalable Screening Tool for Diverse Environments [34.10187730651477]
Congenital heart disease (CHD) is a critical condition that demands early detection.<n>This study presents a deep learning model designed to detect CHD using phonocardiogram (PCG) signals.<n>We evaluated our model on several datasets, including the primary dataset from Bangladesh.
arXiv Detail & Related papers (2025-03-28T05:47:44Z) - Advancements In Heart Disease Prediction: A Machine Learning Approach For Early Detection And Risk Assessment [0.0]
This paper comprehends, assess, and analyze the role, relevance, and efficiency of machine learning models in predicting heart disease risks using clinical data.
The Support Vector Machine (SVM) demonstrates the highest accuracy at 91.51%, confirming its superiority among the evaluated models in terms of predictive capability.
arXiv Detail & Related papers (2024-10-16T22:32:19Z) - AIPatient: Simulating Patients with EHRs and LLM Powered Agentic Workflow [33.8495939261319]
We develop an advanced simulated patient system with AIPatient Knowledge Graph (AIPatient KG) as the input and Reasoning Retrieval-Augmented Generation (Reasoning RAG) as the generation backbone.
Reasoning RAG leverages six LLM powered agents spanning tasks including retrieval, KG query generation, abstraction, checker, rewrite, and summarization.
Our system also presents high readability (median Flesch Reading Ease 77.23; median Flesch Kincaid Grade 5.6), robustness (ANOVA F-value 0.6126, p>0.1), and stability (ANOVA F-value 0.782, p>0.1)
arXiv Detail & Related papers (2024-09-27T17:17:15Z) - Optimizing Mortality Prediction for ICU Heart Failure Patients: Leveraging XGBoost and Advanced Machine Learning with the MIMIC-III Database [1.5186937600119894]
Heart failure affects millions of people worldwide, significantly reducing quality of life and leading to high mortality rates.
Despite extensive research, the relationship between heart failure and mortality rates among ICU patients is not fully understood.
This study analyzed data from 1,177 patients over 18 years old from the MIMIC-III database, identified using ICD-9 codes.
arXiv Detail & Related papers (2024-09-03T07:57:08Z) - Data-Driven Machine Learning Approaches for Predicting In-Hospital Sepsis Mortality [0.0]
Sepsis is a severe condition responsible for many deaths in the United States and worldwide.<n>Previous studies employing machine learning faced limitations in feature selection and model interpretability.<n>This research aimed to develop an interpretable and accurate machine learning model to predict in-hospital sepsis mortality.
arXiv Detail & Related papers (2024-08-03T00:28:25Z) - Machine Learning for ALSFRS-R Score Prediction: Making Sense of the Sensor Data [44.99833362998488]
Amyotrophic Lateral Sclerosis (ALS) is a rapidly progressive neurodegenerative disease that presents individuals with limited treatment options.
The present investigation, spearheaded by the iDPP@CLEF 2024 challenge, focuses on utilizing sensor-derived data obtained through an app.
arXiv Detail & Related papers (2024-07-10T19:17:23Z) - Deep-Learning Tool for Early Identifying Non-Traumatic Intracranial
Hemorrhage Etiology based on CT Scan [40.51754649947294]
The deep learning model was developed with 1868 eligible NCCT scans with non-traumatic ICH collected between January 2011 and April 2018.
The model's diagnostic performance was compared with clinicians's performance.
The clinicians achieve significant improvements in the sensitivity, specificity, and accuracy of diagnoses of certain hemorrhage etiologies with proposed system augmentation.
arXiv Detail & Related papers (2023-02-02T08:45:17Z) - Bootstrapping Your Own Positive Sample: Contrastive Learning With
Electronic Health Record Data [62.29031007761901]
This paper proposes a novel contrastive regularized clinical classification model.
We introduce two unique positive sampling strategies specifically tailored for EHR data.
Our framework yields highly competitive experimental results in predicting the mortality risk on real-world COVID-19 EHR data.
arXiv Detail & Related papers (2021-04-07T06:02:04Z) - UNITE: Uncertainty-based Health Risk Prediction Leveraging Multi-sourced
Data [81.00385374948125]
We present UNcertaInTy-based hEalth risk prediction (UNITE) model.
UNITE provides accurate disease risk prediction and uncertainty estimation leveraging multi-sourced health data.
We evaluate UNITE on real-world disease risk prediction tasks: nonalcoholic fatty liver disease (NASH) and Alzheimer's disease (AD)
UNITE achieves up to 0.841 in F1 score for AD detection, up to 0.609 in PR-AUC for NASH detection, and outperforms various state-of-the-art baselines by up to $19%$ over the best baseline.
arXiv Detail & Related papers (2020-10-22T02:28:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.