Optimized Feature Generation for Tabular Data via LLMs with Decision Tree Reasoning
- URL: http://arxiv.org/abs/2406.08527v1
- Date: Wed, 12 Jun 2024 08:31:34 GMT
- Title: Optimized Feature Generation for Tabular Data via LLMs with Decision Tree Reasoning
- Authors: Jaehyun Nam, Kyuyoung Kim, Seunghyuk Oh, Jihoon Tack, Jaehyung Kim, Jinwoo Shin,
- Abstract summary: We propose a new framework based on large language models (LLMs) and decision Tree reasoning (OCTree)
Our key idea is to leverage LLMs' reasoning capabilities to find good feature generation rules without manually specifying the search space.
Our empirical results demonstrate that this simple framework consistently enhances the performance of various prediction models.
- Score: 53.241569810013836
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Learning effective representations from raw data is crucial for the success of deep learning methods. However, in the tabular domain, practitioners often prefer augmenting raw column features over using learned representations, as conventional tree-based algorithms frequently outperform competing approaches. As a result, feature engineering methods that automatically generate candidate features have been widely used. While these approaches are often effective, there remains ambiguity in defining the space over which to search for candidate features. Moreover, they often rely solely on validation scores to select good features, neglecting valuable feedback from past experiments that could inform the planning of future experiments. To address the shortcomings, we propose a new tabular learning framework based on large language models (LLMs), coined Optimizing Column feature generator with decision Tree reasoning (OCTree). Our key idea is to leverage LLMs' reasoning capabilities to find good feature generation rules without manually specifying the search space and provide language-based reasoning information highlighting past experiments as feedback for iterative rule improvements. Here, we choose a decision tree as reasoning as it can be interpreted in natural language, effectively conveying knowledge of past experiments (i.e., the prediction models trained with the generated features) to the LLM. Our empirical results demonstrate that this simple framework consistently enhances the performance of various prediction models across diverse tabular benchmarks, outperforming competing automatic feature engineering methods.
Related papers
- Data-Centric Human Preference Optimization with Rationales [23.243583332894737]
Reinforcement learning from human feedback plays a crucial role in aligning language models towards human preferences.
This work shifts focus to improving preference learning through a data-centric approach.
We propose enriching existing preference datasets with machine-generated rationales that explain the reasons behind choices.
arXiv Detail & Related papers (2024-07-19T17:27:52Z) - Calibrating LLMs with Preference Optimization on Thought Trees for Generating Rationale in Science Question Scoring [16.38771834692938]
We propose a novel framework capable of generating more faithful rationales and, more importantly, matching performance with black-box scoring systems.
We first mimic the human assessment process by querying Large Language Models (LLMs) to generate a thought tree.
We then summarise intermediate assessment decisions from each thought tree path for creating synthetic rationale data and rationale preference data.
arXiv Detail & Related papers (2024-06-28T14:33:05Z) - Advancing Tool-Augmented Large Language Models: Integrating Insights from Errors in Inference Trees [37.297431187924765]
We propose an inference trajectory optimization framework based on the preference data extracted from decision trees.
Our experiments demonstrate that by obtaining insights from errors in inference trees, TP-LLaMA significantly outperforms the baselines.
arXiv Detail & Related papers (2024-06-11T10:00:18Z) - Language models are weak learners [71.33837923104808]
We show that prompt-based large language models can operate effectively as weak learners.
We incorporate these models into a boosting approach, which can leverage the knowledge within the model to outperform traditional tree-based boosting.
Results illustrate the potential for prompt-based LLMs to function not just as few-shot learners themselves, but as components of larger machine learning pipelines.
arXiv Detail & Related papers (2023-06-25T02:39:19Z) - HyperImpute: Generalized Iterative Imputation with Automatic Model
Selection [77.86861638371926]
We propose a generalized iterative imputation framework for adaptively and automatically configuring column-wise models.
We provide a concrete implementation with out-of-the-box learners, simulators, and interfaces.
arXiv Detail & Related papers (2022-06-15T19:10:35Z) - Offline RL for Natural Language Generation with Implicit Language Q
Learning [87.76695816348027]
Large language models can be inconsistent when it comes to completing user specified tasks.
We propose a novel RL method, that combines both the flexible utility framework of RL with the ability of supervised learning.
In addition to empirically validating ILQL, we present a detailed empirical analysis situations where offline RL can be useful in natural language generation settings.
arXiv Detail & Related papers (2022-06-05T18:38:42Z) - Decision Tree Learning with Spatial Modal Logics [0.0]
More-than-propositional symbolic learning methods have started to appear, in particular for time-dependent data.
We present a theory of spatial decision tree learning, and describe a prototypical implementation of a spatial decision tree learning algorithm.
We compare the predicting power of spatial decision trees with that of classical propositional decision trees in several versions, for a multi-class image classification problem.
arXiv Detail & Related papers (2021-09-17T02:35:18Z) - Efficient Nearest Neighbor Language Models [114.40866461741795]
Non-parametric neural language models (NLMs) learn predictive distributions of text utilizing an external datastore.
We show how to achieve up to a 6x speed-up in inference speed while retaining comparable performance.
arXiv Detail & Related papers (2021-09-09T12:32:28Z) - MurTree: Optimal Classification Trees via Dynamic Programming and Search [61.817059565926336]
We present a novel algorithm for learning optimal classification trees based on dynamic programming and search.
Our approach uses only a fraction of the time required by the state-of-the-art and can handle datasets with tens of thousands of instances.
arXiv Detail & Related papers (2020-07-24T17:06:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.