Zero-Shot Decision Tree Construction via Large Language Models
- URL: http://arxiv.org/abs/2501.16247v1
- Date: Mon, 27 Jan 2025 17:48:48 GMT
- Title: Zero-Shot Decision Tree Construction via Large Language Models
- Authors: Lucas Carrasco, Felipe Urrutia, Andrés Abeliuk,
- Abstract summary: We introduce an algorithm for constructing decision trees using large language models (LLMs) in a zero-shot manner based on Classification and Regression Trees (CART) principles.
Our approach leverages LLMs to perform operations essential for decision tree construction, including attribute discretization, probability calculation, and Gini index computation.
- Score: 2.005837558796176
- License:
- Abstract: This paper introduces a novel algorithm for constructing decision trees using large language models (LLMs) in a zero-shot manner based on Classification and Regression Trees (CART) principles. Traditional decision tree induction methods rely heavily on labeled data to recursively partition data using criteria such as information gain or the Gini index. In contrast, we propose a method that uses the pre-trained knowledge embedded in LLMs to build decision trees without requiring training data. Our approach leverages LLMs to perform operations essential for decision tree construction, including attribute discretization, probability calculation, and Gini index computation based on the probabilities. We show that these zero-shot decision trees can outperform baseline zero-shot methods and achieve competitive performance compared to supervised data-driven decision trees on tabular datasets. The decision trees constructed via this method provide transparent and interpretable models, addressing data scarcity while preserving interpretability. This work establishes a new baseline in low-data machine learning, offering a principled, knowledge-driven alternative to data-driven tree construction.
Related papers
- Decision Trees for Interpretable Clusters in Mixture Models and Deep Representations [5.65604054654671]
We introduce the notion of an explainability-to-noise ratio for mixture models.
We propose an algorithm that takes as input a mixture model and constructs a suitable tree in data-independent time.
We prove upper and lower bounds on the error rate of the resulting decision tree.
arXiv Detail & Related papers (2024-11-03T14:00:20Z) - "Oh LLM, I'm Asking Thee, Please Give Me a Decision Tree": Zero-Shot Decision Tree Induction and Embedding with Large Language Models [1.742301293487176]
Large language models (LLMs) provide powerful means to leverage prior knowledge for predictive modeling when data is limited.
In this work, we demonstrate how LLMs can use their compressed world knowledge to generate intrinsically interpretable machine learning models.
arXiv Detail & Related papers (2024-09-27T09:53:48Z) - Optimized Feature Generation for Tabular Data via LLMs with Decision Tree Reasoning [53.241569810013836]
We propose a novel framework that utilizes large language models (LLMs) to identify effective feature generation rules.
We use decision trees to convey this reasoning information, as they can be easily represented in natural language.
OCTree consistently enhances the performance of various prediction models across diverse benchmarks.
arXiv Detail & Related papers (2024-06-12T08:31:34Z) - Learning accurate and interpretable decision trees [27.203303726977616]
We develop approaches to design decision tree learning algorithms given repeated access to data from the same domain.
We study the sample complexity of tuning prior parameters in Bayesian decision tree learning, and extend our results to decision tree regression.
We also study the interpretability of the learned decision trees and introduce a data-driven approach for optimizing the explainability versus accuracy trade-off using decision trees.
arXiv Detail & Related papers (2024-05-24T20:10:10Z) - An Interpretable Client Decision Tree Aggregation process for Federated Learning [7.8973037023478785]
We propose an Interpretable Client Decision Tree aggregation process for Federated Learning scenarios.
This model is based on aggregating multiple decision paths of the decision trees and can be used on different decision tree types, such as ID3 and CART.
We carry out the experiments within four datasets, and the analysis shows that the tree built with the model improves the local models, and outperforms the state-of-the-art.
arXiv Detail & Related papers (2024-04-03T06:53:56Z) - Learning a Decision Tree Algorithm with Transformers [75.96920867382859]
We introduce MetaTree, a transformer-based model trained via meta-learning to directly produce strong decision trees.
We fit both greedy decision trees and globally optimized decision trees on a large number of datasets, and train MetaTree to produce only the trees that achieve strong generalization performance.
arXiv Detail & Related papers (2024-02-06T07:40:53Z) - Hierarchical clustering with dot products recovers hidden tree structure [53.68551192799585]
In this paper we offer a new perspective on the well established agglomerative clustering algorithm, focusing on recovery of hierarchical structure.
We recommend a simple variant of the standard algorithm, in which clusters are merged by maximum average dot product and not, for example, by minimum distance or within-cluster variance.
We demonstrate that the tree output by this algorithm provides a bona fide estimate of generative hierarchical structure in data, under a generic probabilistic graphical model.
arXiv Detail & Related papers (2023-05-24T11:05:12Z) - RLET: A Reinforcement Learning Based Approach for Explainable QA with
Entailment Trees [47.745218107037786]
We propose RLET, a Reinforcement Learning based Entailment Tree generation framework.
RLET iteratively performs single step reasoning with sentence selection and deduction generation modules.
Experiments on three settings of the EntailmentBank dataset demonstrate the strength of using RL framework.
arXiv Detail & Related papers (2022-10-31T06:45:05Z) - Structural Learning of Probabilistic Sentential Decision Diagrams under
Partial Closed-World Assumption [127.439030701253]
Probabilistic sentential decision diagrams are a class of structured-decomposable circuits.
We propose a new scheme based on a partial closed-world assumption: data implicitly provide the logical base of the circuit.
Preliminary experiments show that the proposed approach might properly fit training data, and generalize well to test data, provided that these remain consistent with the underlying logical base.
arXiv Detail & Related papers (2021-07-26T12:01:56Z) - MurTree: Optimal Classification Trees via Dynamic Programming and Search [61.817059565926336]
We present a novel algorithm for learning optimal classification trees based on dynamic programming and search.
Our approach uses only a fraction of the time required by the state-of-the-art and can handle datasets with tens of thousands of instances.
arXiv Detail & Related papers (2020-07-24T17:06:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.