論文の概要: MEMO-QCD: Quantum Density Estimation through Memetic Optimisation for Quantum Circuit Design
- arxiv url: http://arxiv.org/abs/2406.08591v3
- Date: Tue, 17 Sep 2024 22:02:41 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-19 23:03:11.451096
- Title: MEMO-QCD: Quantum Density Estimation through Memetic Optimisation for Quantum Circuit Design
- Title(参考訳): MEMO-QCD:量子回路設計のためのメメティック最適化による量子密度推定
- Authors: Juan E. Ardila-García, Vladimir Vargas-Calderón, Fabio A. González, Diego H. Useche, Herbert Vinck-Posada,
- Abstract要約: 本稿では,密度推定のための効率的な量子回路設計手法を提案する。
この戦略は、密度推定のための量子インスパイアされたアルゴリズムと、メメティックアルゴリズムに基づく回路最適化ルーチンに基づいている。
- 参考スコア(独自算出の注目度): 3.046689922445082
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper presents a strategy for efficient quantum circuit design for density estimation. The strategy is based on a quantum-inspired algorithm for density estimation and a circuit optimisation routine based on memetic algorithms. The model maps a training dataset to a quantum state represented by a density matrix through a quantum feature map. This training state encodes the probability distribution of the dataset in a quantum state, such that the density of a new sample can be estimated by projecting its corresponding quantum state onto the training state. We propose the application of a memetic algorithm to find the architecture and parameters of a variational quantum circuit that implements the quantum feature map, along with a variational learning strategy to prepare the training state. Demonstrations of the proposed strategy show an accurate approximation of the Gaussian kernel density estimation method through shallow quantum circuits illustrating the feasibility of the algorithm for near-term quantum hardware.
- Abstract(参考訳): 本稿では,密度推定のための効率的な量子回路設計手法を提案する。
この戦略は、密度推定のための量子インスパイアされたアルゴリズムと、メメティックアルゴリズムに基づく回路最適化ルーチンに基づいている。
このモデルは、トレーニングデータセットを密度行列で表される量子状態に量子特徴写像を通してマッピングする。
このトレーニング状態は、対応する量子状態をトレーニング状態に投影することにより、新しいサンプルの密度を推定できるように、データセットの確率分布を量子状態に符号化する。
本稿では,量子特徴写像を実装した変分量子回路のアーキテクチャとパラメータを見つけるためのメメティックアルゴリズムと,トレーニング状態を作成するための変分学習戦略を提案する。
提案手法の実証は, 近距離量子ハードウェアにおけるアルゴリズムの実現可能性を示す浅量子回路によるガウス核密度推定法の正確な近似を示す。
関連論文リスト
- Optimal Quantum Circuit Design via Unitary Neural Networks [0.0]
本稿では,量子回路モデル表現に量子アルゴリズムの機能を合成する自動手法を提案する。
この訓練されたモデルが、元のアルゴリズムと同等の量子回路モデルを効果的に生成できることを実証する。
論文 参考訳(メタデータ) (2024-08-23T16:41:15Z) - Non-unitary Coupled Cluster Enabled by Mid-circuit Measurements on Quantum Computers [37.69303106863453]
本稿では,古典計算機における量子化学の柱である結合クラスタ(CC)理論に基づく状態準備法を提案する。
提案手法は,従来の計算オーバーヘッドを低減し,CNOTおよびTゲートの数を平均で28%,57%削減する。
論文 参考訳(メタデータ) (2024-06-17T14:10:10Z) - Reliable confidence regions for quantum tomography using distribution moments [0.0]
本稿では,量子トモグラフィーの精度の高い誤差バーを決定するための計算効率が高く信頼性の高い手法を提案する。
我々は,クラウドアクセス可能な量子プロセッサを用いてシミュレーションと実演の両方を用いて,多数の量子トモグラフィープロトコルのアプローチをベンチマークした。
論文 参考訳(メタデータ) (2023-07-24T14:21:35Z) - Monte Carlo Graph Search for Quantum Circuit Optimization [26.114550071165628]
本研究はモンテカルログラフ探索に基づく量子アーキテクチャ探索アルゴリズムと重要サンプリングの尺度を提案する。
これは、離散ゲートと連続変数を含むゲートの両方に対して、ゲートオーダーの最適化に適用できる。
論文 参考訳(メタデータ) (2023-07-14T14:01:25Z) - Compilation of algorithm-specific graph states for quantum circuits [55.90903601048249]
本稿では,高レベル言語で記述された量子回路から,アルゴリズム固有のグラフ状態を作成する量子回路コンパイラを提案する。
この計算は、このグラフ状態に関する一連の非パウリ測度を用いて実装することができる。
論文 参考訳(メタデータ) (2022-09-15T14:52:31Z) - An Introduction to Quantum Machine Learning for Engineers [36.18344598412261]
量子機械学習は、ゲートベースの量子コンピュータをプログラムするための支配的なパラダイムとして登場しつつある。
この本は、確率と線形代数の背景を持つエンジニアの聴衆のために、量子機械学習の自己完結した紹介を提供する。
論文 参考訳(メタデータ) (2022-05-11T12:10:52Z) - Optimisation-free Classification and Density Estimation with Quantum
Circuits [0.0]
量子回路を用いた確率密度推定と分類のための新しい機械学習フレームワークの実装を実証する。
このフレームワークは、トレーニングデータセットまたは単一のデータサンプルを、量子特徴写像を介して物理システムの量子状態にマッピングする。
我々は、我々のフレームワークに量子アドバンテージを活用できる変分量子回路のアプローチについて議論する。
論文 参考訳(メタデータ) (2022-03-28T02:40:24Z) - Quantum density estimation with density matrices: Application to quantum anomaly detection [8.893420660481734]
密度推定は統計学と機械学習の中心的なタスクである。
本稿ではQ-DEMDEと呼ばれる新しい量子古典密度行列密度推定モデルを提案する。
また,本手法の量子古典的異常検出への応用について述べる。
論文 参考訳(メタデータ) (2022-01-24T23:40:00Z) - Numerical Simulations of Noisy Quantum Circuits for Computational
Chemistry [51.827942608832025]
短期量子コンピュータは、小さな分子の基底状態特性を計算することができる。
計算アンサッツの構造と装置ノイズによる誤差が計算にどのように影響するかを示す。
論文 参考訳(メタデータ) (2021-12-31T16:33:10Z) - Circuit Symmetry Verification Mitigates Quantum-Domain Impairments [69.33243249411113]
本稿では,量子状態の知識を必要とせず,量子回路の可換性を検証する回路指向対称性検証を提案する。
特に、従来の量子領域形式を回路指向安定化器に一般化するフーリエ時間安定化器(STS)手法を提案する。
論文 参考訳(メタデータ) (2021-12-27T21:15:35Z) - Quantum Measurement Classification with Qudits [0.0]
提案した量子プロトコルは,確率密度関数を推定し,教師付き学習方式で予測できることを示す。
提案手法は,高次元量子コンピュータにおいて,教師付き分類と密度推定を実現するための有効な手法であることを示す。
論文 参考訳(メタデータ) (2021-07-20T21:54:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。