論文の概要: Optimisation-free Classification and Density Estimation with Quantum
Circuits
- arxiv url: http://arxiv.org/abs/2203.14452v2
- Date: Thu, 31 Mar 2022 12:50:30 GMT
- ステータス: 処理完了
- システム内更新日: 2022-04-01 12:09:42.416578
- Title: Optimisation-free Classification and Density Estimation with Quantum
Circuits
- Title(参考訳): 量子回路を用いた最適無分類と密度推定
- Authors: Vladimir Vargas-Calder\'on, Fabio A. Gonz\'alez, and Herbert
Vinck-Posada
- Abstract要約: 量子回路を用いた確率密度推定と分類のための新しい機械学習フレームワークの実装を実証する。
このフレームワークは、トレーニングデータセットまたは単一のデータサンプルを、量子特徴写像を介して物理システムの量子状態にマッピングする。
我々は、我々のフレームワークに量子アドバンテージを活用できる変分量子回路のアプローチについて議論する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: We demonstrate the implementation of a novel machine learning framework for
probability density estimation and classification using quantum circuits. The
framework maps a training data set or a single data sample to the quantum state
of a physical system through quantum feature maps. The quantum state of the
arbitrarily large training data set summarises its probability distribution in
a finite-dimensional quantum wave function. By projecting the quantum state of
a new data sample onto the quantum state of the training data set, one can
derive statistics to classify or estimate the density of the new data sample.
Remarkably, the implementation of our framework on a real quantum device does
not require any optimisation of quantum circuit parameters. Nonetheless, we
discuss a variational quantum circuit approach that could leverage quantum
advantage for our framework.
- Abstract(参考訳): 量子回路を用いた確率密度推定と分類のための新しい機械学習フレームワークの実装を実証する。
このフレームワークは、トレーニングデータセットまたは単一のデータサンプルを、量子特徴マップを介して物理システムの量子状態にマップする。
任意の大きなトレーニングデータセットの量子状態は、その確率分布を有限次元の量子波動関数で要約する。
新しいデータサンプルの量子状態をトレーニングデータセットの量子状態に投影することにより、統計を導出して、新しいデータサンプルの密度を分類または推定することができる。
注目すべきは、実際の量子デバイスに対する我々のフレームワークの実装は、量子回路パラメータの最適化を必要としないことである。
それにもかかわらず、我々はこのフレームワークの量子長所を活用できる変分量子回路アプローチについて論じる。
関連論文リスト
- Quantum data encoding as a distinct abstraction layer in the design of quantum circuits [1.1510009152620668]
我々は量子データ符号化の概念、すなわち量子状態を通して設定されたデータセットの表現を提供する形式を定式化する。
主要な量子アルゴリズムが、データの読み込みに関して、いかに自然な解釈を見出すかを示す。
新しい概念的枠組みは、量子ベースのモンテカルロシミュレーションへの応用を考えることで実証されている。
論文 参考訳(メタデータ) (2024-09-14T07:00:58Z) - The curse of random quantum data [62.24825255497622]
量子データのランドスケープにおける量子機械学習の性能を定量化する。
量子機械学習におけるトレーニング効率と一般化能力は、量子ビットの増加に伴い指数関数的に抑制される。
この結果は量子カーネル法と量子ニューラルネットワークの広帯域限界の両方に適用できる。
論文 参考訳(メタデータ) (2024-08-19T12:18:07Z) - MEMO-QCD: Quantum Density Estimation through Memetic Optimisation for Quantum Circuit Design [3.046689922445082]
本稿では,密度推定のための効率的な量子回路設計手法を提案する。
この戦略は、密度推定のための量子インスパイアされたアルゴリズムと、メメティックアルゴリズムに基づく回路最適化ルーチンに基づいている。
論文 参考訳(メタデータ) (2024-06-12T18:54:22Z) - Mixed-Dimensional Qudit State Preparation Using Edge-Weighted Decision Diagrams [3.393749500700096]
量子コンピュータは難解な問題を解く可能性がある。
このポテンシャルを利用するための重要な要素の1つは、多値系(qudit)のために量子状態を効率的に準備する能力である。
本稿では,混合次元系に着目した量子状態生成法について検討する。
論文 参考訳(メタデータ) (2024-06-05T18:00:01Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
本研究では,高エネルギー物理における量子データ学習の実践的問題への適用性について検討する。
我々は、量子畳み込みニューラルネットワークに基づくアンサッツを用いて、基底状態の量子位相を認識できることを数値的に示す。
これらのベンチマークで示された非自明な学習特性の観察は、高エネルギー物理学における量子データ学習アーキテクチャのさらなる探求の動機となる。
論文 参考訳(メタデータ) (2023-06-29T18:00:01Z) - Statistical learning on randomized data to verify quantum state k-designs [0.0]
純粋状態のランダムアンサンブルは、量子物理学の様々な側面において非常に重要であることが証明されている。
完全にランダムなアンサンブルを生成するのは 実験的に困難ですが 近似は 同様に有用です
ランダム性の度合いを検証することは、多体システム上で完全な量子状態トモグラフィーを実行するのと同様に、高価なタスクである可能性がある。
論文 参考訳(メタデータ) (2023-05-02T14:46:28Z) - Efficient criteria of quantumness for a large system of qubits [58.720142291102135]
大規模部分量子コヒーレント系の基本パラメータの無次元結合について論じる。
解析的および数値計算に基づいて、断熱進化中の量子ビット系に対して、そのような数を提案する。
論文 参考訳(メタデータ) (2021-08-30T23:50:05Z) - Trainable Discrete Feature Embeddings for Variational Quantum Classifier [4.40450723619303]
我々は、QRAC(Quantum Random Access Coding)を用いて、より少ない量子ビットで離散的な特徴をマップする方法を示す。
QRACと最近提案された量子量学習(quantum metric learning)と呼ばれる量子特徴マップのトレーニング戦略を組み合わせることで、個別の特徴をトレーニング可能な量子回路に埋め込む新しい手法を提案する。
論文 参考訳(メタデータ) (2021-06-17T12:02:01Z) - Quantum Federated Learning with Quantum Data [87.49715898878858]
量子機械学習(QML)は、量子コンピューティングの発展に頼って、大規模な複雑な機械学習問題を探求する、有望な分野として登場した。
本稿では、量子データ上で動作し、量子回路パラメータの学習を分散的に共有できる初めての完全量子連合学習フレームワークを提案する。
論文 参考訳(メタデータ) (2021-05-30T12:19:27Z) - Nearest Centroid Classification on a Trapped Ion Quantum Computer [57.5195654107363]
我々は,古典的データを量子状態に効率よくロードし,距離推定を行う手法を用いて,量子近接Centroid分類器を設計する。
MNIST手書き桁データセットの古典的最寄りのセントロイド分類器の精度と8次元合成データの最大100%の精度とを一致させ,11量子ビットトラップイオン量子マシン上で実験的に実証した。
論文 参考訳(メタデータ) (2020-12-08T01:10:30Z) - Quantum information spreading in a disordered quantum walk [50.591267188664666]
量子ウォークスを用いて量子情報拡散パターンを探索する量子探索プロトコルを設計する。
我々は、異常や古典的輸送を調査するために、コヒーレントな静的および動的障害に焦点を当てる。
以上の結果から,複雑なネットワークで発生する欠陥や摂動の情報を読み取る装置として,量子ウォーク(Quantum Walk)が考えられる。
論文 参考訳(メタデータ) (2020-10-20T20:03:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。