Coupled Ocean-Atmosphere Dynamics in a Machine Learning Earth System Model
- URL: http://arxiv.org/abs/2406.08632v1
- Date: Wed, 12 Jun 2024 20:29:14 GMT
- Title: Coupled Ocean-Atmosphere Dynamics in a Machine Learning Earth System Model
- Authors: Chenggong Wang, Michael S. Pritchard, Noah Brenowitz, Yair Cohen, Boris Bonev, Thorsten Kurth, Dale Durran, Jaideep Pathak,
- Abstract summary: We present the Ocean-linked-atmosphere (Ola) model, a high-resolution (0.25deg) Artificial Intelligence/ Machine Learning (AI/ML) coupled earth-system model.
We find that Ola exhibits learned characteristics of ocean-atmosphere coupled dynamics including tropical oceanic waves with appropriate phase speeds.
We present initial evidence of skill in forecasting the El Nino/Southern Oscillation (ENSO) which compares favorably to the SPEAR model of the Geophysical Fluid Dynamics Laboratory.
- Score: 0.6008008212472723
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Seasonal climate forecasts are socioeconomically important for managing the impacts of extreme weather events and for planning in sectors like agriculture and energy. Climate predictability on seasonal timescales is tied to boundary effects of the ocean on the atmosphere and coupled interactions in the ocean-atmosphere system. We present the Ocean-linked-atmosphere (Ola) model, a high-resolution (0.25{\deg}) Artificial Intelligence/ Machine Learning (AI/ML) coupled earth-system model which separately models the ocean and atmosphere dynamics using an autoregressive Spherical Fourier Neural Operator architecture, with a view towards enabling fast, accurate, large ensemble forecasts on the seasonal timescale. We find that Ola exhibits learned characteristics of ocean-atmosphere coupled dynamics including tropical oceanic waves with appropriate phase speeds, and an internally generated El Ni\~no/Southern Oscillation (ENSO) having realistic amplitude, geographic structure, and vertical structure within the ocean mixed layer. We present initial evidence of skill in forecasting the ENSO which compares favorably to the SPEAR model of the Geophysical Fluid Dynamics Laboratory.
Related papers
- FengWu-W2S: A deep learning model for seamless weather-to-subseasonal forecast of global atmosphere [53.22497376154084]
We propose FengWu-Weather to Subseasonal (FengWu-W2S), which builds on the FengWu global weather forecast model and incorporates an ocean-atmosphere-land coupling structure along with a diverse perturbation strategy.
Our hindcast results demonstrate that FengWu-W2S reliably predicts atmospheric conditions out to 3-6 weeks ahead, enhancing predictive capabilities for global surface air temperature, precipitation, geopotential height and intraseasonal signals such as the Madden-Julian Oscillation (MJO) and North Atlantic Oscillation (NAO)
Our ablation experiments on forecast error growth from daily to seasonal timescales reveal potential
arXiv Detail & Related papers (2024-11-15T13:44:37Z) - Regional Ocean Forecasting with Hierarchical Graph Neural Networks [1.4146420810689422]
We introduce SeaCast, a neural network designed for high-resolution, medium-range ocean forecasting.
SeaCast employs a graph-based framework to handle the complex geometry of ocean grids and integrates external forcing data tailored to the regional ocean context.
Our approach is validated through experiments at a high spatial resolution using the operational numerical model of the Mediterranean Sea provided by the Copernicus Marine Service.
arXiv Detail & Related papers (2024-10-15T17:34:50Z) - MambaDS: Near-Surface Meteorological Field Downscaling with Topography Constrained Selective State Space Modeling [68.69647625472464]
Downscaling, a crucial task in meteorological forecasting, enables the reconstruction of high-resolution meteorological states for target regions.
Previous downscaling methods lacked tailored designs for meteorology and encountered structural limitations.
We propose a novel model called MambaDS, which enhances the utilization of multivariable correlations and topography information.
arXiv Detail & Related papers (2024-08-20T13:45:49Z) - Data-driven Global Ocean Modeling for Seasonal to Decadal Prediction [39.7461632644892]
ORCA-DL is the first data-driven 3D ocean model for seasonal to decadal prediction of global ocean circulation.
It accurately simulates three-dimensional ocean dynamics and outperforms state-of-the-art dynamical models.
It stably emulates ocean dynamics at decadal timescales, demonstrating its potential even for skillful decadal predictions and climate projections.
arXiv Detail & Related papers (2024-05-24T10:23:17Z) - OXYGENERATOR: Reconstructing Global Ocean Deoxygenation Over a Century with Deep Learning [50.365198230613956]
Existing expert-dominated numerical simulations fail to catch up with the dynamic variation caused by global warming and human activities.
We propose OxyGenerator, the first deep learning based model, to reconstruct the global ocean deoxygenation from 1920 to 2023.
arXiv Detail & Related papers (2024-05-12T09:32:40Z) - OceanNet: A principled neural operator-based digital twin for regional oceans [0.0]
This study introduces OceanNet, a principled neural operator-based digital twin for ocean circulation.
OceanNet is applied to the northwest Atlantic Ocean western boundary current (the Gulf Stream)
arXiv Detail & Related papers (2023-10-01T23:06:17Z) - Multi-scale Digital Twin: Developing a fast and physics-informed
surrogate model for groundwater contamination with uncertain climate models [53.44486283038738]
Climate change exacerbates the long-term soil management problem of groundwater contamination.
We develop a physics-informed machine learning surrogate model using U-Net enhanced Fourier Neural Contaminated (PDENO)
In parallel, we develop a convolutional autoencoder combined with climate data to reduce the dimensionality of climatic region similarities across the United States.
arXiv Detail & Related papers (2022-11-20T06:46:35Z) - Learning-based estimation of in-situ wind speed from underwater
acoustics [58.293528982012255]
We introduce a deep learning approach for the retrieval of wind speed time series from underwater acoustics.
Our approach bridges data assimilation and learning-based frameworks to benefit both from prior physical knowledge and computational efficiency.
arXiv Detail & Related papers (2022-08-18T15:27:40Z) - Modeling Oceanic Variables with Dynamic Graph Neural Networks [0.09830751917335563]
We describe a data-driven method to predict environmental variables in the region of Santos-Sao Vicente-Bertioga Estuarine System in Brazil.
Our model exploits both temporal and spatial inductive biases by joining state-of-the-art sequence models and relational models.
Experiments show that better results are attained by our model, while maintaining flexibility and little domain knowledge dependency.
arXiv Detail & Related papers (2022-06-25T22:43:02Z) - Synergy between Observation Systems Oceanic in Turbulent Regions [0.0]
Ocean dynamics constitute a source of incertitude in determining the ocean's role in complex climatic phenomena.
Current observation systems have limitations in achieving sufficiently statistical precision for three-dimensional oceanic data.
We present the data-driven approaches which explore latent class regressions and deep regression neural networks in modeling ocean dynamics in the extensions of Gulf Stream and Kuroshio currents.
arXiv Detail & Related papers (2020-12-28T22:52:57Z) - Dynamical Landscape and Multistability of a Climate Model [64.467612647225]
We find a third intermediate stable state in one of the two climate models we consider.
The combination of our approaches allows to identify how the negative feedback of ocean heat transport and entropy production drastically change the topography of Earth's climate.
arXiv Detail & Related papers (2020-10-20T15:31:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.