Regional Ocean Forecasting with Hierarchical Graph Neural Networks
- URL: http://arxiv.org/abs/2410.11807v2
- Date: Wed, 20 Nov 2024 10:33:05 GMT
- Title: Regional Ocean Forecasting with Hierarchical Graph Neural Networks
- Authors: Daniel Holmberg, Emanuela Clementi, Teemu Roos,
- Abstract summary: We introduce SeaCast, a neural network designed for high-resolution, medium-range ocean forecasting.
SeaCast employs a graph-based framework to handle the complex geometry of ocean grids and integrates external forcing data tailored to the regional ocean context.
Our approach is validated through experiments at a high spatial resolution using the operational numerical model of the Mediterranean Sea provided by the Copernicus Marine Service.
- Score: 1.4146420810689422
- License:
- Abstract: Accurate ocean forecasting systems are vital for understanding marine dynamics, which play a crucial role in environmental management and climate adaptation strategies. Traditional numerical solvers, while effective, are computationally expensive and time-consuming. Recent advancements in machine learning have revolutionized weather forecasting, offering fast and energy-efficient alternatives. Building on these advancements, we introduce SeaCast, a neural network designed for high-resolution, medium-range ocean forecasting. SeaCast employs a graph-based framework to effectively handle the complex geometry of ocean grids and integrates external forcing data tailored to the regional ocean context. Our approach is validated through experiments at a high spatial resolution using the operational numerical model of the Mediterranean Sea provided by the Copernicus Marine Service, along with both numerical and data-driven atmospheric forcings.
Related papers
- Advancing Towards a Marine Digital Twin Platform: Modeling the Mar Menor Coastal Lagoon Ecosystem in the South Western Mediterranean [39.58165317223655]
Coastal marine ecosystems face mounting pressures from anthropogenic activities and climate change.
This paper pioneers the development of a Marine Digital Twin Platform aimed at modeling the Mar Menor Coastal Lagoon Ecosystem in the Region of Murcia.
arXiv Detail & Related papers (2024-09-16T10:01:18Z) - Efficient Localized Adaptation of Neural Weather Forecasting: A Case Study in the MENA Region [62.09891513612252]
We focus on limited-area modeling and train our model specifically for localized region-level downstream tasks.
We consider the MENA region due to its unique climatic challenges, where accurate localized weather forecasting is crucial for managing water resources, agriculture and mitigating the impacts of extreme weather events.
Our study aims to validate the effectiveness of integrating parameter-efficient fine-tuning (PEFT) methodologies, specifically Low-Rank Adaptation (LoRA) and its variants, to enhance forecast accuracy, as well as training speed, computational resource utilization, and memory efficiency in weather and climate modeling for specific regions.
arXiv Detail & Related papers (2024-09-11T19:31:56Z) - Coupled Ocean-Atmosphere Dynamics in a Machine Learning Earth System Model [0.6008008212472723]
We present the Ocean-linked-atmosphere (Ola) model, a high-resolution (0.25deg) Artificial Intelligence/ Machine Learning (AI/ML) coupled earth-system model.
We find that Ola exhibits learned characteristics of ocean-atmosphere coupled dynamics including tropical oceanic waves with appropriate phase speeds.
We present initial evidence of skill in forecasting the El Nino/Southern Oscillation (ENSO) which compares favorably to the SPEAR model of the Geophysical Fluid Dynamics Laboratory.
arXiv Detail & Related papers (2024-06-12T20:29:14Z) - Deep Vision-Based Framework for Coastal Flood Prediction Under Climate Change Impacts and Shoreline Adaptations [0.3413711585591077]
We present a systematic framework for training high-fidelity Deep Vision-based coastal flood prediction models in low-data settings.
We also introduce a deep CNN architecture tailored specifically to the coastal flood prediction problem at hand.
The performance of the developed DL models is validated against commonly adopted geostatistical regression methods.
arXiv Detail & Related papers (2024-06-06T19:54:34Z) - SFANet: Spatial-Frequency Attention Network for Weather Forecasting [54.470205739015434]
Weather forecasting plays a critical role in various sectors, driving decision-making and risk management.
Traditional methods often struggle to capture the complex dynamics of meteorological systems.
We propose a novel framework designed to address these challenges and enhance the accuracy of weather prediction.
arXiv Detail & Related papers (2024-05-29T08:00:15Z) - OceanNet: A principled neural operator-based digital twin for regional oceans [0.0]
This study introduces OceanNet, a principled neural operator-based digital twin for ocean circulation.
OceanNet is applied to the northwest Atlantic Ocean western boundary current (the Gulf Stream)
arXiv Detail & Related papers (2023-10-01T23:06:17Z) - Data-Driven Short-Term Daily Operational Sea Ice Regional Forecasting [52.77986479871782]
Global warming made the Arctic available for marine operations and created demand for reliable operational sea ice forecasts.
In this work, we investigate the performance of the U-Net model trained in two regimes for predicting sea ice for up to the next 10 days.
We show that this deep learning model can outperform simple baselines by a significant margin and improve its quality by using additional weather data and training on multiple regions.
arXiv Detail & Related papers (2022-10-17T09:14:35Z) - Learning-based estimation of in-situ wind speed from underwater
acoustics [58.293528982012255]
We introduce a deep learning approach for the retrieval of wind speed time series from underwater acoustics.
Our approach bridges data assimilation and learning-based frameworks to benefit both from prior physical knowledge and computational efficiency.
arXiv Detail & Related papers (2022-08-18T15:27:40Z) - Modeling Oceanic Variables with Dynamic Graph Neural Networks [0.09830751917335563]
We describe a data-driven method to predict environmental variables in the region of Santos-Sao Vicente-Bertioga Estuarine System in Brazil.
Our model exploits both temporal and spatial inductive biases by joining state-of-the-art sequence models and relational models.
Experiments show that better results are attained by our model, while maintaining flexibility and little domain knowledge dependency.
arXiv Detail & Related papers (2022-06-25T22:43:02Z) - Forecasting large-scale circulation regimes using deformable
convolutional neural networks and global spatiotemporal climate data [86.1450118623908]
We investigate a supervised machine learning approach based on deformable convolutional neural networks (deCNNs)
We forecast the North Atlantic-European weather regimes during extended boreal winter for 1 to 15 days into the future.
Due to its wider field of view, we also observe deCNN achieving considerably better performance than regular convolutional neural networks at lead times beyond 5-6 days.
arXiv Detail & Related papers (2022-02-10T11:37:00Z) - SALT: Sea lice Adaptive Lattice Tracking -- An Unsupervised Approach to
Generate an Improved Ocean Model [72.3183990520267]
We propose SALT: Sea lice Adaptive Lattice Tracking approach for efficient estimation of sea lice dispersion and distribution.
Specifically, an adaptive spatial mesh is generated by merging nodes in the lattice graph of the Ocean Model based on local ocean properties.
The proposed SALT technique shows promise for enhancing proactive aquaculture management through predictive modelling of sea lice infestation pressure maps in a changing climate.
arXiv Detail & Related papers (2021-06-24T17:29:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.