論文の概要: Batch-Instructed Gradient for Prompt Evolution:Systematic Prompt Optimization for Enhanced Text-to-Image Synthesis
- arxiv url: http://arxiv.org/abs/2406.08713v1
- Date: Thu, 13 Jun 2024 00:33:29 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-14 21:47:58.744800
- Title: Batch-Instructed Gradient for Prompt Evolution:Systematic Prompt Optimization for Enhanced Text-to-Image Synthesis
- Title(参考訳): バッチ命令によるプロンプト進化のグラディエント:拡張テキスト・画像合成のための体系的プロンプト最適化
- Authors: Xinrui Yang, Zhuohan Wang, Anthony Hu,
- Abstract要約: 本研究では,テキスト・画像生成モデルの入力プロンプトを最適化するマルチエージェントフレームワークを提案する。
プロのプロンプトデータベースは、命令修飾子を高精細なプロンプトを生成するためのベンチマークとして機能する。
予備的アブレーション研究は、様々なシステムコンポーネントの有効性を強調し、今後の改善の分野を提案する。
- 参考スコア(独自算出の注目度): 3.783530340696776
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Text-to-image models have shown remarkable progress in generating high-quality images from user-provided prompts. Despite this, the quality of these images varies due to the models' sensitivity to human language nuances. With advancements in large language models, there are new opportunities to enhance prompt design for image generation tasks. Existing research primarily focuses on optimizing prompts for direct interaction, while less attention is given to scenarios involving intermediary agents, like the Stable Diffusion model. This study proposes a Multi-Agent framework to optimize input prompts for text-to-image generation models. Central to this framework is a prompt generation mechanism that refines initial queries using dynamic instructions, which evolve through iterative performance feedback. High-quality prompts are then fed into a state-of-the-art text-to-image model. A professional prompts database serves as a benchmark to guide the instruction modifier towards generating high-caliber prompts. A scoring system evaluates the generated images, and an LLM generates new instructions based on calculated gradients. This iterative process is managed by the Upper Confidence Bound (UCB) algorithm and assessed using the Human Preference Score version 2 (HPS v2). Preliminary ablation studies highlight the effectiveness of various system components and suggest areas for future improvements.
- Abstract(参考訳): テキスト・ツー・イメージ・モデルは、ユーザが提供するプロンプトから高品質な画像を生成する際、顕著な進歩を見せている。
それにもかかわらず、これらの画像の品質は、人間の言語ニュアンスに対するモデルの敏感さによって異なる。
大規模言語モデルの進歩により、画像生成タスクの迅速な設計を促進する新たな機会がある。
既存の研究は主に直接相互作用のプロンプトの最適化に重点を置いているが、安定拡散モデルのような中間エージェントを含むシナリオにはあまり注目されていない。
本研究では,テキスト・画像生成モデルの入力プロンプトを最適化するマルチエージェントフレームワークを提案する。
このフレームワークの中心は、動的インストラクションを使用して初期クエリを洗練し、反復的なパフォーマンスフィードバックを通じて進化するプロンプト生成メカニズムである。
高品質なプロンプトは、最先端のテキスト・ツー・イメージモデルに入力される。
プロのプロンプトデータベースは、命令修飾子を高精細なプロンプトを生成するためのベンチマークとして機能する。
スコアリングシステムは生成された画像を評価し、LCMは計算された勾配に基づいて新しい命令を生成する。
この反復処理は、上信頼境界(UCB)アルゴリズムによって管理され、Human Preference Scoreバージョン2(HPS v2)を用いて評価される。
予備的アブレーション研究は、様々なシステムコンポーネントの有効性を強調し、今後の改善の分野を提案する。
関連論文リスト
- TIPO: Text to Image with Text Presampling for Prompt Optimization [16.001151202788304]
TIPOは、言語モデル(LM)によるテキスト・ツー・イメージ(T2I)生成を強化するために設計された革新的なフレームワークである。
LLM(Large Language Models)や強化学習(RL)に依存する従来のアプローチとは異なり、TIPOはトレーニングされたプロンプトデータセットの配布によって、ユーザの入力プロンプトを調整する。
論文 参考訳(メタデータ) (2024-11-12T19:09:45Z) - Prompt Recovery for Image Generation Models: A Comparative Study of Discrete Optimizers [58.50071292008407]
本稿では,近年の離散最適化手法の突発的逆転問題に対する直接比較について述べる。
逆プロンプトと基底真理画像とのCLIP類似性に着目し, 逆プロンプトが生成する画像と基底真理画像との類似性について検討した。
論文 参考訳(メタデータ) (2024-08-12T21:35:59Z) - Multimodal Large Language Model is a Human-Aligned Annotator for Text-to-Image Generation [87.50120181861362]
VisionPreferは高品質できめ細かい選好データセットで、複数の選好面をキャプチャする。
我々は、VisionPrefer上で報酬モデルVP-Scoreをトレーニングし、テキストから画像への生成モデルのトレーニングを指導し、VP-Scoreの嗜好予測精度は人間のアノテーションに匹敵する。
論文 参考訳(メタデータ) (2024-04-23T14:53:15Z) - Dynamic Prompt Optimizing for Text-to-Image Generation [63.775458908172176]
テキストから画像への生成モデルを改善するために,textbfPrompt textbfAuto-textbfEditing (PAE)法を導入する。
我々は、各単語の重みと射出時間ステップを探索するために、オンライン強化学習戦略を採用し、動的微調整プロンプトを導いた。
論文 参考訳(メタデータ) (2024-04-05T13:44:39Z) - A User-Friendly Framework for Generating Model-Preferred Prompts in
Text-to-Image Synthesis [33.71897211776133]
よく設計されたプロンプトは、素晴らしい画像を生成する際にテキストと画像のモデルをガイドする可能性を実証している。
初心者にとっては、手動でプロンプトを入力することで、望ましい結果を達成することは困難である。
本稿では,ユーザ入力プロンプトをモデル優先プロンプトに自動的に変換する新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2024-02-20T06:58:49Z) - BeautifulPrompt: Towards Automatic Prompt Engineering for Text-to-Image
Synthesis [14.852061933308276]
極めて単純な生記述から高品質なプロンプトを生成するための深層生成モデルである BeautifulPrompt を提案する。
私たちの研究では、まず、高品質で高品質な収集プロンプトペアよりも美しいプロンプトモデルを微調整しました。
さらに、より優れたテキスト・ツー・イメージ生成サービスを提供するために、クラウドネイティブなAIプラットフォームへのBeautifulPromptの統合についても紹介します。
論文 参考訳(メタデータ) (2023-11-12T06:39:00Z) - RenAIssance: A Survey into AI Text-to-Image Generation in the Era of
Large Model [93.8067369210696]
テキスト・ツー・イメージ生成(テキスト・トゥ・イメージ・ジェネレーション、英: Text-to-image Generation、TTI)とは、テキスト入力を処理し、テキスト記述に基づいて高忠実度画像を生成するモデルである。
拡散モデル (diffusion model) は、繰り返しステップによるノイズの体系的導入を通じて画像の生成に使用される顕著な生成モデルである。
大規模モデルの時代、モデルサイズを拡大し、大規模言語モデルとの統合により、TTIモデルの性能がさらに向上した。
論文 参考訳(メタデータ) (2023-09-02T03:27:20Z) - SUR-adapter: Enhancing Text-to-Image Pre-trained Diffusion Models with
Large Language Models [56.88192537044364]
本研究では,事前学習拡散モデルに対するセマンティック・アダプタ (SUR-adapter) と呼ばれる簡易なパラメータ効率の良い微調整手法を提案する。
ユーザエクスペリエンスの向上により,テキストから画像への拡散モデルの使いやすさが向上する。
論文 参考訳(メタデータ) (2023-05-09T05:48:38Z) - Prompt-based Learning for Unpaired Image Captioning [86.44188293709307]
Unpaired Image Captioning (UIC) は、非整合視覚言語サンプルペアから画像記述を学習するために開発された。
近年のVision-Language Pre-Trained Models (VL-PTMs) の成功は、プロンプトベース学習の発展を引き起こしている。
本稿では,UICモデルをトレーニングするためのプロンプトに基づく新しいスキームを提案し,その強力な一般化能力を最大限に活用する。
論文 参考訳(メタデータ) (2022-05-26T03:13:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。