論文の概要: Prompt Recovery for Image Generation Models: A Comparative Study of Discrete Optimizers
- arxiv url: http://arxiv.org/abs/2408.06502v1
- Date: Mon, 12 Aug 2024 21:35:59 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-14 19:17:34.777082
- Title: Prompt Recovery for Image Generation Models: A Comparative Study of Discrete Optimizers
- Title(参考訳): 画像生成モデルのプロンプト回復:離散最適化器の比較検討
- Authors: Joshua Nathaniel Williams, Avi Schwarzschild, J. Zico Kolter,
- Abstract要約: 本稿では,近年の離散最適化手法の突発的逆転問題に対する直接比較について述べる。
逆プロンプトと基底真理画像とのCLIP類似性に着目し, 逆プロンプトが生成する画像と基底真理画像との類似性について検討した。
- 参考スコア(独自算出の注目度): 58.50071292008407
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recovering natural language prompts for image generation models, solely based on the generated images is a difficult discrete optimization problem. In this work, we present the first head-to-head comparison of recent discrete optimization techniques for the problem of prompt inversion. We evaluate Greedy Coordinate Gradients (GCG), PEZ , Random Search, AutoDAN and BLIP2's image captioner across various evaluation metrics related to the quality of inverted prompts and the quality of the images generated by the inverted prompts. We find that focusing on the CLIP similarity between the inverted prompts and the ground truth image acts as a poor proxy for the similarity between ground truth image and the image generated by the inverted prompts. While the discrete optimizers effectively minimize their objectives, simply using responses from a well-trained captioner often leads to generated images that more closely resemble those produced by the original prompts.
- Abstract(参考訳): 生成した画像のみに基づいて、画像生成モデルの自然言語プロンプトを復元することは、難しい離散最適化問題である。
そこで本研究では,最近の離散最適化手法の突発的逆転問題に対する直接比較を行った。
我々は、逆プロンプトの品質と、逆プロンプトによって生成された画像の品質に関する様々な評価指標を用いて、グレディ座標勾配(GCG)、PEZ、ランダムサーチ、オートDAN、BLIP2の画像キャプタを評価した。
逆プロンプトと基底真理画像とのCLIP類似性に着目し, 逆プロンプトが生成する画像と基底真理画像との類似性について検討した。
離散オプティマイザは目的を効果的に最小化するが、よく訓練されたキャプタからの応答を使うだけで、元のプロンプトが生成したものとよりよく似た画像が生成される。
関連論文リスト
- Optimizing CLIP Models for Image Retrieval with Maintained Joint-Embedding Alignment [0.7499722271664144]
Contrastive Language and Image Pairing (CLIP) はマルチメディア検索における変換手法である。
CLIPは通常、2つのニューラルネットワークを同時にトレーニングし、テキストとイメージペアのジョイント埋め込みを生成する。
本稿では,様々な画像に基づく類似性検索シナリオに対して,CLIPモデルを最適化するという課題に対処する。
論文 参考訳(メタデータ) (2024-09-03T14:33:01Z) - FRAP: Faithful and Realistic Text-to-Image Generation with Adaptive Prompt Weighting [18.708185548091716]
FRAPは、画像毎のプロンプト重み付けを適応的に調整し、生成した画像の即時アライメントと認証を改善するための、シンプルで効果的なアプローチである。
FRAPは、複雑なデータセットからのプロンプトに対して、プロンプト画像のアライメントが著しく高い画像を生成する。
また, FRAPとLPMの即時書き直しを併用して, 劣化した即時画像のアライメントを復元する方法について検討した。
論文 参考訳(メタデータ) (2024-08-21T15:30:35Z) - Batch-Instructed Gradient for Prompt Evolution:Systematic Prompt Optimization for Enhanced Text-to-Image Synthesis [3.783530340696776]
本研究では,テキスト・画像生成モデルの入力プロンプトを最適化するマルチエージェントフレームワークを提案する。
プロのプロンプトデータベースは、命令修飾子を高精細なプロンプトを生成するためのベンチマークとして機能する。
予備的アブレーション研究は、様々なシステムコンポーネントの有効性を強調し、今後の改善の分野を提案する。
論文 参考訳(メタデータ) (2024-06-13T00:33:29Z) - Iterative Prompt Learning for Unsupervised Backlit Image Enhancement [86.90993077000789]
そこで本研究では,CLIP-LITと略称される,非教師なしのバックライト画像強調手法を提案する。
オープンワールドのCLIPはバックライト画像と well-lit 画像の区別に有効であることを示す。
提案手法は,学習フレームワークの更新と,学習結果を視覚的に満足するまでのネットワークの強化を交互に行う。
論文 参考訳(メタデータ) (2023-03-30T17:37:14Z) - DynaST: Dynamic Sparse Transformer for Exemplar-Guided Image Generation [56.514462874501675]
本稿では,動的スパースアテンションに基づくトランスフォーマーモデルを提案する。
このアプローチの核心は、ある位置がフォーカスすべき最適なトークン数の変化をカバーすることに特化した、新しいダイナミックアテンションユニットです。
3つの応用、ポーズ誘導型人物画像生成、エッジベース顔合成、歪みのない画像スタイル転送の実験により、DynaSTは局所的な詳細において優れた性能を発揮することが示された。
論文 参考訳(メタデータ) (2022-07-13T11:12:03Z) - Hierarchical Text-Conditional Image Generation with CLIP Latents [20.476720970770128]
画像表現を明示的に生成することで、フォトリアリズムとキャプションの類似性が最小限に抑えられ、画像の多様性が向上することを示す。
画像表現に条件付けされたデコーダは、その意味とスタイルの両方を保存した画像のバリエーションを生成できる。
論文 参考訳(メタデータ) (2022-04-13T01:10:33Z) - IR-GAN: Image Manipulation with Linguistic Instruction by Increment
Reasoning [110.7118381246156]
Incrment Reasoning Generative Adversarial Network (IR-GAN)は、画像における視覚的インクリメントと命令における意味的インクリメントとの整合性を推論することを目的としている。
まず,単語レベルと命令レベルの命令エンコーダを導入し,履歴関連命令からユーザの意図を意味的インクリメントとして学習する。
第2に、対象画像を生成するために、意味的インクリメントの表現をソースイメージに組み込んで、ソースイメージが補助的参照の役割を担っている。
論文 参考訳(メタデータ) (2022-04-02T07:48:39Z) - Ensembling with Deep Generative Views [72.70801582346344]
生成モデルは、色やポーズの変化などの現実世界の変動を模倣する人工画像の「ビュー」を合成することができる。
そこで本研究では, 画像分類などの下流解析作業において, 実画像に適用できるかどうかを検討する。
StyleGAN2を再生増強の源として使用し、顔の属性、猫の顔、車を含む分類タスクについてこの設定を調査します。
論文 参考訳(メタデータ) (2021-04-29T17:58:35Z) - Perceptual Image Restoration with High-Quality Priori and Degradation
Learning [28.93489249639681]
本モデルは,復元画像と劣化画像の類似度を測定するのに有効であることを示す。
同時修復・拡張フレームワークは,実世界の複雑な分解型によく一般化する。
論文 参考訳(メタデータ) (2021-03-04T13:19:50Z) - Deep Variational Network Toward Blind Image Restoration [60.45350399661175]
ブラインド画像復元はコンピュータビジョンでは一般的だが難しい問題である。
両利点を両立させることを目的として,新しいブラインド画像復元手法を提案する。
画像デノイングと超解像という2つの典型的なブラインド赤外線タスクの実験により,提案手法が現状よりも優れた性能を達成できることが実証された。
論文 参考訳(メタデータ) (2020-08-25T03:30:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。