Comparative Analysis of Deep Convolutional Neural Networks for Detecting Medical Image Deepfakes
- URL: http://arxiv.org/abs/2406.08758v1
- Date: Mon, 8 Jan 2024 16:37:22 GMT
- Title: Comparative Analysis of Deep Convolutional Neural Networks for Detecting Medical Image Deepfakes
- Authors: Abdel Rahman Alsabbagh, Omar Al-Kadi,
- Abstract summary: This paper employs a comprehensive evaluation of 13 state-of-the-art Deep Convolutional Neural Network (DCNN) models.
We find that ResNet50V2 excels in precision and specificity, whereas DenseNet169 is distinguished by its accuracy, recall, and F1-score.
We also assess the latent space separability quality across the examined DCNNs, showing superiority in both the DenseNet and EfficientNet model families.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Generative Adversarial Networks (GANs) have exhibited noteworthy advancements across various applications, including medical imaging. While numerous state-of-the-art Deep Convolutional Neural Network (DCNN) architectures are renowned for their proficient feature extraction, this paper investigates their efficacy in the context of medical image deepfake detection. The primary objective is to effectively distinguish real from tampered or manipulated medical images by employing a comprehensive evaluation of 13 state-of-the-art DCNNs. Performance is assessed across diverse evaluation metrics, encompassing considerations of time efficiency and computational resource requirements. Our findings reveal that ResNet50V2 excels in precision and specificity, whereas DenseNet169 is distinguished by its accuracy, recall, and F1-score. We investigate the specific scenarios in which one model would be more favorable than another. Additionally, MobileNetV3Large offers competitive performance, emerging as the swiftest among the considered DCNN models while maintaining a relatively small parameter count. We also assess the latent space separability quality across the examined DCNNs, showing superiority in both the DenseNet and EfficientNet model families and entailing a higher understanding of medical image deepfakes. The experimental analysis in this research contributes valuable insights to the field of deepfake image detection in the medical imaging domain.
Related papers
- Explainable Convolutional Neural Networks for Retinal Fundus Classification and Cutting-Edge Segmentation Models for Retinal Blood Vessels from Fundus Images [0.0]
Research focuses on the critical field of early diagnosis of disease by examining retinal blood vessels in fundus images.
Our research in fundus image analysis advances deep learning-based classification using eight pre-trained CNN models.
To enhance interpretability, we utilize Explainable AI techniques such as Grad-CAM, Grad-CAM++, Score-CAM, Faster Score-CAM, and Layer CAM.
arXiv Detail & Related papers (2024-05-12T17:21:57Z) - INCEPTNET: Precise And Early Disease Detection Application For Medical
Images Analyses [0.5439020425818999]
We propose a novel deep neural network (DNN), entitled InceptNet, for early disease detection and segmentation of medical images.
Fast InceptNet is shaped by the prominent Unet architecture, and it seizes the power of an Inception module to be fast and cost effective.
The improvement was more significant on images with small scale structures.
arXiv Detail & Related papers (2023-09-05T11:39:29Z) - Preservation of High Frequency Content for Deep Learning-Based Medical
Image Classification [74.84221280249876]
An efficient analysis of large amounts of chest radiographs can aid physicians and radiologists.
We propose a novel Discrete Wavelet Transform (DWT)-based method for the efficient identification and encoding of visual information.
arXiv Detail & Related papers (2022-05-08T15:29:54Z) - Stain Normalized Breast Histopathology Image Recognition using
Convolutional Neural Networks for Cancer Detection [9.826027427965354]
Recent advances have shown that the convolutional Neural Network (CNN) architectures can be used to design a Computer Aided Diagnostic (CAD) System for breast cancer detection.
We consider some contemporary CNN models for binary classification of breast histopathology images.
We have validated the trained CNN networks on a publicly available BreaKHis dataset, for 200x and 400x magnified histopathology images.
arXiv Detail & Related papers (2022-01-04T03:09:40Z) - Medulloblastoma Tumor Classification using Deep Transfer Learning with
Multi-Scale EfficientNets [63.62764375279861]
We propose an end-to-end MB tumor classification and explore transfer learning with various input sizes and matching network dimensions.
Using a data set with 161 cases, we demonstrate that pre-trained EfficientNets with larger input resolutions lead to significant performance improvements.
arXiv Detail & Related papers (2021-09-10T13:07:11Z) - CNNs and GANs in MRI-based cross-modality medical image estimation [1.5469452301122177]
Cross-modality image estimation involves the generation of images of one medical imaging modality from that of another modality.
CNNs have been shown to be useful in identifying, characterising and extracting image patterns.
Generative adversarial networks (GANs) use CNNs as generators and estimated images are discriminated as true or false based on an additional network.
arXiv Detail & Related papers (2021-06-04T01:27:57Z) - Few-shot Medical Image Segmentation using a Global Correlation Network
with Discriminative Embedding [60.89561661441736]
We propose a novel method for few-shot medical image segmentation.
We construct our few-shot image segmentor using a deep convolutional network trained episodically.
We enhance discriminability of deep embedding to encourage clustering of the feature domains of the same class.
arXiv Detail & Related papers (2020-12-10T04:01:07Z) - Domain Generalization for Medical Imaging Classification with
Linear-Dependency Regularization [59.5104563755095]
We introduce a simple but effective approach to improve the generalization capability of deep neural networks in the field of medical imaging classification.
Motivated by the observation that the domain variability of the medical images is to some extent compact, we propose to learn a representative feature space through variational encoding.
arXiv Detail & Related papers (2020-09-27T12:30:30Z) - Comparison of Convolutional neural network training parameters for
detecting Alzheimers disease and effect on visualization [0.0]
Convolutional neural networks (CNN) have become a powerful tool for detecting patterns in image data.
Despite the high accuracy obtained from CNN models for MRI data so far, almost no papers provided information on the features or image regions driving this accuracy.
arXiv Detail & Related papers (2020-08-18T15:21:50Z) - The efficiency of deep learning algorithms for detecting anatomical
reference points on radiological images of the head profile [55.41644538483948]
A U-Net neural network allows performing the detection of anatomical reference points more accurately than a fully convolutional neural network.
The results of the detection of anatomical reference points by the U-Net neural network are closer to the average results of the detection of reference points by a group of orthodontists.
arXiv Detail & Related papers (2020-05-25T13:51:03Z) - Ventral-Dorsal Neural Networks: Object Detection via Selective Attention [51.79577908317031]
We propose a new framework called Ventral-Dorsal Networks (VDNets)
Inspired by the structure of the human visual system, we propose the integration of a "Ventral Network" and a "Dorsal Network"
Our experimental results reveal that the proposed method outperforms state-of-the-art object detection approaches.
arXiv Detail & Related papers (2020-05-15T23:57:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.