A Survey on Compositional Learning of AI Models: Theoretical and Experimental Practices
- URL: http://arxiv.org/abs/2406.08787v2
- Date: Thu, 21 Nov 2024 00:54:18 GMT
- Title: A Survey on Compositional Learning of AI Models: Theoretical and Experimental Practices
- Authors: Sania Sinha, Tanawan Premsri, Parisa Kordjamshidi,
- Abstract summary: Compositional learning is crucial for human cognition, especially in human language comprehension and visual perception.
Despite its integral role in intelligence, there is a lack of systematic theoretical and experimental research methodologies.
This paper surveys the literature on compositional learning of AI models and the connections made to cognitive studies.
- Score: 15.92779896185647
- License:
- Abstract: Compositional learning, mastering the ability to combine basic concepts and construct more intricate ones, is crucial for human cognition, especially in human language comprehension and visual perception. This notion is tightly connected to generalization over unobserved situations. Despite its integral role in intelligence, there is a lack of systematic theoretical and experimental research methodologies, making it difficult to analyze the compositional learning abilities of computational models. In this paper, we survey the literature on compositional learning of AI models and the connections made to cognitive studies. We identify abstract concepts of compositionality in cognitive and linguistic studies and connect these to the computational challenges faced by language and vision models in compositional reasoning. We overview the formal definitions, tasks, evaluation benchmarks, various computational models, and theoretical findings. Our primary focus is on linguistic benchmarks and combining language and vision, though there is a large amount of research on compositional concept learning in the computer vision community alone. We cover modern studies on large language models to provide a deeper understanding of the cutting-edge compositional capabilities exhibited by state-of-the-art AI models and pinpoint important directions for future research.
Related papers
- What Machine Learning Tells Us About the Mathematical Structure of Concepts [0.0]
The study highlights how each framework provides a distinct mathematical perspective for modeling concepts.
This work emphasizes the importance of interdisciplinary dialogue, aiming to enrich our understanding of the complex relationship between human cognition and artificial intelligence.
arXiv Detail & Related papers (2024-08-28T03:30:22Z) - From Frege to chatGPT: Compositionality in language, cognition, and deep neural networks [0.0]
We review recent empirical work from machine learning for a broad audience in philosophy, cognitive science, and neuroscience.
In particular, our review emphasizes two approaches to endowing neural networks with compositional generalization capabilities.
We conclude by discussing the implications that these findings may have for the study of compositionality in human cognition.
arXiv Detail & Related papers (2024-05-24T02:36:07Z) - Learning Interpretable Concepts: Unifying Causal Representation Learning
and Foundation Models [51.43538150982291]
We study how to learn human-interpretable concepts from data.
Weaving together ideas from both fields, we show that concepts can be provably recovered from diverse data.
arXiv Detail & Related papers (2024-02-14T15:23:59Z) - Foundational Models Defining a New Era in Vision: A Survey and Outlook [151.49434496615427]
Vision systems to see and reason about the compositional nature of visual scenes are fundamental to understanding our world.
The models learned to bridge the gap between such modalities coupled with large-scale training data facilitate contextual reasoning, generalization, and prompt capabilities at test time.
The output of such models can be modified through human-provided prompts without retraining, e.g., segmenting a particular object by providing a bounding box, having interactive dialogues by asking questions about an image or video scene or manipulating the robot's behavior through language instructions.
arXiv Detail & Related papers (2023-07-25T17:59:18Z) - From Word Models to World Models: Translating from Natural Language to
the Probabilistic Language of Thought [124.40905824051079]
We propose rational meaning construction, a computational framework for language-informed thinking.
We frame linguistic meaning as a context-sensitive mapping from natural language into a probabilistic language of thought.
We show that LLMs can generate context-sensitive translations that capture pragmatically-appropriate linguistic meanings.
We extend our framework to integrate cognitively-motivated symbolic modules.
arXiv Detail & Related papers (2023-06-22T05:14:00Z) - In-Context Analogical Reasoning with Pre-Trained Language Models [10.344428417489237]
We explore the use of intuitive language-based abstractions to support analogy in AI systems.
Specifically, we apply large pre-trained language models (PLMs) to visual Raven's Progressive Matrices ( RPM)
We find that PLMs exhibit a striking capacity for zero-shot relational reasoning, exceeding human performance and nearing supervised vision-based methods.
arXiv Detail & Related papers (2023-05-28T04:22:26Z) - Acquiring and Modelling Abstract Commonsense Knowledge via Conceptualization [49.00409552570441]
We study the role of conceptualization in commonsense reasoning, and formulate a framework to replicate human conceptual induction.
We apply the framework to ATOMIC, a large-scale human-annotated CKG, aided by the taxonomy Probase.
arXiv Detail & Related papers (2022-06-03T12:24:49Z) - Causal Reasoning Meets Visual Representation Learning: A Prospective
Study [117.08431221482638]
Lack of interpretability, robustness, and out-of-distribution generalization are becoming the challenges of the existing visual models.
Inspired by the strong inference ability of human-level agents, recent years have witnessed great effort in developing causal reasoning paradigms.
This paper aims to provide a comprehensive overview of this emerging field, attract attention, encourage discussions, bring to the forefront the urgency of developing novel causal reasoning methods.
arXiv Detail & Related papers (2022-04-26T02:22:28Z) - Modelling Compositionality and Structure Dependence in Natural Language [0.12183405753834563]
Drawing on linguistics and set theory, a formalisation of these ideas is presented in the first half of this thesis.
We see how cognitive systems that process language need to have certain functional constraints.
Using the advances of word embedding techniques, a model of relational learning is simulated.
arXiv Detail & Related papers (2020-11-22T17:28:50Z) - Concept Learners for Few-Shot Learning [76.08585517480807]
We propose COMET, a meta-learning method that improves generalization ability by learning to learn along human-interpretable concept dimensions.
We evaluate our model on few-shot tasks from diverse domains, including fine-grained image classification, document categorization and cell type annotation.
arXiv Detail & Related papers (2020-07-14T22:04:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.