論文の概要: Understanding the Generalizability of Link Predictors Under Distribution Shifts on Graphs
- arxiv url: http://arxiv.org/abs/2406.08788v1
- Date: Thu, 13 Jun 2024 03:47:12 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-14 21:28:25.771273
- Title: Understanding the Generalizability of Link Predictors Under Distribution Shifts on Graphs
- Title(参考訳): グラフ上の分布シフトにおけるリンク予測子の一般化可能性の理解
- Authors: Jay Revolinsky, Harry Shomer, Jiliang Tang,
- Abstract要約: 多くの人気のあるベンチマークデータセットは、データセットのサンプルが同じ分布から引き出されると仮定している。
構造特性を利用して制御分布シフトを誘導するLP固有データ分割を導入する。
我々は、異なるSOTA LP手法の評価により、シフトの効果を実証的に検証し、その後、これらの手法を一般化手法と組み合わせる。
- 参考スコア(独自算出の注目度): 34.58496513149175
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recently, multiple models proposed for link prediction (LP) demonstrate impressive results on benchmark datasets. However, many popular benchmark datasets often assume that dataset samples are drawn from the same distribution (i.e., IID samples). In real-world situations, this assumption is often incorrect; since uncontrolled factors may lead train and test samples to come from separate distributions. To tackle the distribution shift problem, recent work focuses on creating datasets that feature distribution shifts and designing generalization methods that perform well on the new data. However, those studies only consider distribution shifts that affect {\it node-} and {\it graph-level} tasks, thus ignoring link-level tasks. Furthermore, relatively few LP generalization methods exist. To bridge this gap, we introduce a set of LP-specific data splits which utilizes structural properties to induce a controlled distribution shift. We verify the shift's effect empirically through evaluation of different SOTA LP methods and subsequently couple these methods with generalization techniques. Interestingly, LP-specific methods frequently generalize poorly relative to heuristics or basic GNN methods. Finally, this work provides analysis to uncover insights for enhancing LP generalization. Our code is available at: \href{https://github.com/revolins/LPStructGen}{https://github.com/revolins/LPStructGen}
- Abstract(参考訳): 近年、リンク予測(LP)のために提案された複数のモデルが、ベンチマークデータセット上で印象的な結果を示している。
しかし、人気のあるベンチマークデータセットの多くは、データセットのサンプルが同じ分布(IIDサンプル)から引き出されると仮定することが多い。
制御されていない要因は、列車とテストサンプルを別々の分布から導き出す可能性があるためである。
分散シフト問題に対処するため、最近の研究は、分散シフトを特徴とするデータセットの作成と、新しいデータでうまく機能する一般化手法の設計に重点を置いている。
しかしながら、これらの研究は {\it node-} および {\it graph-level} タスクに影響を与える分布シフトのみを考慮し、したがってリンクレベルタスクを無視する。
さらに、比較的少ないLP一般化法が存在する。
このギャップを埋めるために、構造特性を利用して制御された分散シフトを誘導するLP特化データスプリットのセットを導入する。
我々は、異なるSOTA LP手法の評価により、シフトの効果を実証的に検証し、その後、これらの手法を一般化手法と組み合わせる。
興味深いことに、LP特有の手法は、ヒューリスティックスや基本的なGNN手法とあまり関係がないことをしばしば一般化する。
最後に、この研究はLP一般化を強化するための洞察を明らかにするための分析を提供する。
私たちのコードは以下の通りである。 \href{https://github.com/revolins/LPStructGen}{https://github.com/LPStructGen}
関連論文リスト
- FOOGD: Federated Collaboration for Both Out-of-distribution Generalization and Detection [24.969694113366216]
Federated Learning(FL)は、クライアントモデルと連携してグローバルな知識を捉える、有望な機械学習パラダイムである。
実世界のシナリオにFLモデルをデプロイすることは、分布内データと予期せぬ分布外データの共存のため、依然として信頼性が低い。
本稿では,各クライアントの確率密度を推定し,信頼性の高いグローバル分布を求めるFOOGDを提案する。
論文 参考訳(メタデータ) (2024-10-15T08:39:31Z) - First-Order Manifold Data Augmentation for Regression Learning [4.910937238451485]
我々は、新しいデータ駆動型ドメイン非依存データ拡張法であるFOMAを紹介する。
分布内一般化と分布外ベンチマークに基づいてFOMAを評価し,いくつかのニューラルアーキテクチャの一般化を改善することを示す。
論文 参考訳(メタデータ) (2024-06-16T12:35:05Z) - Graph Out-of-Distribution Generalization via Causal Intervention [69.70137479660113]
本稿では,ノードレベルの分散シフトの下で頑健なグラフニューラルネットワーク(GNN)をトレーニングするための,概念的に単純だが原則化されたアプローチを提案する。
本手法は,環境推定器と熟練GNN予測器を協調する因果推論に基づく新たな学習目標を提案する。
本モデルでは,様々な分散シフトによる一般化を効果的に向上し,グラフOOD一般化ベンチマーク上での最先端の精度を最大27.4%向上させることができる。
論文 参考訳(メタデータ) (2024-02-18T07:49:22Z) - Align Your Prompts: Test-Time Prompting with Distribution Alignment for
Zero-Shot Generalization [64.62570402941387]
テスト領域のギャップを埋めるために、機能分散シフトを最小限にして、テスト時にマルチモーダルプロンプトを適用するために、単一のテストサンプルを使用します。
提案手法は,既存のプロンプト学習技術以上のゼロショットトップ1精度を向上し,ベースラインのMaPLeよりも3.08%向上した。
論文 参考訳(メタデータ) (2023-11-02T17:59:32Z) - Wild-Time: A Benchmark of in-the-Wild Distribution Shift over Time [69.77704012415845]
時間的シフトは、現実世界にデプロイされた機械学習モデルのパフォーマンスを著しく低下させる可能性がある。
ドメイン一般化、連続学習、自己教師付き学習、アンサンブル学習の手法を含む13の先行手法をベンチマークする。
いずれの評価方略も,分布外データから分布外データへの平均的な性能低下を観察する。
論文 参考訳(メタデータ) (2022-11-25T17:07:53Z) - AnoShift: A Distribution Shift Benchmark for Unsupervised Anomaly
Detection [7.829710051617368]
本稿では,ネットワーク侵入検知のためのトラフィックデータセットである Kyoto-2006+ 上に構築された,時間とともに変化するデータを含む教師なし異常検出ベンチマークを提案する。
まず, 基本機能解析, t-SNE, および最適輸送手法を用いて, 年々の分布距離を計測する。
従来のアプローチからディープラーニングまで,さまざまなモデルでパフォーマンス劣化を検証する。
論文 参考訳(メタデータ) (2022-06-30T17:59:22Z) - Deep learning model solves change point detection for multiple change
types [69.77452691994712]
変更点検出は、データ分散の急激な障害をキャッチすることを目的としている。
本稿では,マルチディストリビューションシナリオにおけるアプローチを提案する。
論文 参考訳(メタデータ) (2022-04-15T09:44:21Z) - Discovering Invariant Rationales for Graph Neural Networks [104.61908788639052]
グラフニューラルネットワーク(GNN)の固有の解釈可能性とは、入力グラフの特徴の小さなサブセットを見つけることである。
本稿では,本質的に解釈可能なGNNを構築するために,不変理性(DIR)を発見するための新しい戦略を提案する。
論文 参考訳(メタデータ) (2022-01-30T16:43:40Z) - Characterizing Generalization under Out-Of-Distribution Shifts in Deep
Metric Learning [32.51394862932118]
本稿では,DMLにおける分布外シフトの下での一般化を特徴付けるために,ooDMLベンチマークを提案する。
ooDMLは、より困難で多様な列車間分散シフトにおいて、一般化性能を調査するために設計されている。
一般化は難易度に常に低下する傾向にあるが, 分散シフトが増加するにつれて, 性能が向上する手法もある。
論文 参考訳(メタデータ) (2021-07-20T15:26:09Z) - Examining and Combating Spurious Features under Distribution Shift [94.31956965507085]
我々は、最小限の統計量という情報理論の概念を用いて、ロバストで刺激的な表現を定義し、分析する。
入力分布のバイアスしか持たない場合でも、モデルはトレーニングデータから急激な特徴を拾い上げることができることを証明しています。
分析から着想を得た結果,グループDROは,グループ同士の相関関係を直接考慮しない場合に失敗する可能性が示唆された。
論文 参考訳(メタデータ) (2021-06-14T05:39:09Z) - I-SPEC: An End-to-End Framework for Learning Transportable, Shift-Stable
Models [6.802401545890963]
開発とデプロイメントの間の環境の変化により、古典的な教師あり学習は、新たなターゲット分布への一般化に失敗するモデルを生成する。
我々は、データを用いて部分祖先グラフ(PAG)を学習することで、この欠点に対処するエンドツーエンドフレームワークであるI-SPECを提案する。
我々は、I-SPECを死亡予測問題に適用し、完全な因果DAGの事前知識を必要とせずに、シフトに頑健なモデルを学ぶことができることを示す。
論文 参考訳(メタデータ) (2020-02-20T18:56:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。