OmniH2O: Universal and Dexterous Human-to-Humanoid Whole-Body Teleoperation and Learning
- URL: http://arxiv.org/abs/2406.08858v1
- Date: Thu, 13 Jun 2024 06:44:46 GMT
- Title: OmniH2O: Universal and Dexterous Human-to-Humanoid Whole-Body Teleoperation and Learning
- Authors: Tairan He, Zhengyi Luo, Xialin He, Wenli Xiao, Chong Zhang, Weinan Zhang, Kris Kitani, Changliu Liu, Guanya Shi,
- Abstract summary: We present OmniH2O, a learning-based system for whole-body humanoid teleoperation and autonomy.
Using kinematic as a universal control interface, OmniH2O enables various ways for a human to control a full-sized humanoid with dexterous hands.
We release the first humanoid whole-body control dataset, OmniH2O-6, containing six everyday tasks, and demonstrate humanoid whole-body skill learning from teleoperated datasets.
- Score: 45.51662378032706
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present OmniH2O (Omni Human-to-Humanoid), a learning-based system for whole-body humanoid teleoperation and autonomy. Using kinematic pose as a universal control interface, OmniH2O enables various ways for a human to control a full-sized humanoid with dexterous hands, including using real-time teleoperation through VR headset, verbal instruction, and RGB camera. OmniH2O also enables full autonomy by learning from teleoperated demonstrations or integrating with frontier models such as GPT-4. OmniH2O demonstrates versatility and dexterity in various real-world whole-body tasks through teleoperation or autonomy, such as playing multiple sports, moving and manipulating objects, and interacting with humans. We develop an RL-based sim-to-real pipeline, which involves large-scale retargeting and augmentation of human motion datasets, learning a real-world deployable policy with sparse sensor input by imitating a privileged teacher policy, and reward designs to enhance robustness and stability. We release the first humanoid whole-body control dataset, OmniH2O-6, containing six everyday tasks, and demonstrate humanoid whole-body skill learning from teleoperated datasets.
Related papers
- Learning from Massive Human Videos for Universal Humanoid Pose Control [46.417054298537195]
This paper introduces Humanoid-X, a large-scale dataset of over 20 million humanoid robot poses with corresponding text-based motion descriptions.
We train a large humanoid model, UH-1, which takes text instructions as input and outputs corresponding actions to control a humanoid robot.
Our scalable training approach leads to superior generalization in text-based humanoid control, marking a significant step toward adaptable, real-world-ready humanoid robots.
arXiv Detail & Related papers (2024-12-18T18:59:56Z) - Learning Multi-Modal Whole-Body Control for Real-World Humanoid Robots [13.229028132036321]
Masked Humanoid Controller (MHC) supports standing, walking, and mimicry of whole and partial-body motions.
MHC imitates partially masked motions from a library of behaviors spanning standing, walking, optimized reference trajectories, re-targeted video clips, and human motion capture data.
We demonstrate sim-to-real transfer on the real-world Digit V3 humanoid robot.
arXiv Detail & Related papers (2024-07-30T09:10:24Z) - HumanPlus: Humanoid Shadowing and Imitation from Humans [82.47551890765202]
We introduce a full-stack system for humanoids to learn motion and autonomous skills from human data.
We first train a low-level policy in simulation via reinforcement learning using existing 40-hour human motion datasets.
We then perform supervised behavior cloning to train skill policies using egocentric vision, allowing humanoids to complete different tasks autonomously.
arXiv Detail & Related papers (2024-06-15T00:41:34Z) - Learning Human-to-Humanoid Real-Time Whole-Body Teleoperation [34.65637397405485]
We present Human to Humanoid (H2O), a framework that enables real-time whole-body teleoperation of a humanoid robot with only an RGB camera.
We train a robust real-time humanoid motion imitator in simulation using these refined motions and transfer it to the real humanoid robot in a zero-shot manner.
To the best of our knowledge, this is the first demonstration to achieve learning-based real-time whole-body humanoid teleoperation.
arXiv Detail & Related papers (2024-03-07T12:10:41Z) - Expressive Whole-Body Control for Humanoid Robots [20.132927075816742]
We learn a whole-body control policy on a human-sized robot to mimic human motions as realistic as possible.
With training in simulation and Sim2Real transfer, our policy can control a humanoid robot to walk in different styles, shake hands with humans, and even dance with a human in the real world.
arXiv Detail & Related papers (2024-02-26T18:09:24Z) - RealDex: Towards Human-like Grasping for Robotic Dexterous Hand [64.47045863999061]
We introduce RealDex, a pioneering dataset capturing authentic dexterous hand grasping motions infused with human behavioral patterns.
RealDex holds immense promise in advancing humanoid robot for automated perception, cognition, and manipulation in real-world scenarios.
arXiv Detail & Related papers (2024-02-21T14:59:46Z) - HERD: Continuous Human-to-Robot Evolution for Learning from Human
Demonstration [57.045140028275036]
We show that manipulation skills can be transferred from a human to a robot through the use of micro-evolutionary reinforcement learning.
We propose an algorithm for multi-dimensional evolution path searching that allows joint optimization of both the robot evolution path and the policy.
arXiv Detail & Related papers (2022-12-08T15:56:13Z) - DexVIP: Learning Dexterous Grasping with Human Hand Pose Priors from
Video [86.49357517864937]
We propose DexVIP, an approach to learn dexterous robotic grasping from human-object interaction videos.
We do this by curating grasp images from human-object interaction videos and imposing a prior over the agent's hand pose.
We demonstrate that DexVIP compares favorably to existing approaches that lack a hand pose prior or rely on specialized tele-operation equipment.
arXiv Detail & Related papers (2022-02-01T00:45:57Z) - Visual Navigation Among Humans with Optimal Control as a Supervisor [72.5188978268463]
We propose an approach that combines learning-based perception with model-based optimal control to navigate among humans.
Our approach is enabled by our novel data-generation tool, HumANav.
We demonstrate that the learned navigation policies can anticipate and react to humans without explicitly predicting future human motion.
arXiv Detail & Related papers (2020-03-20T16:13:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.