Plan, Generate and Complicate: Improving Low-resource Dialogue State Tracking via Easy-to-Difficult Zero-shot Data Augmentation
- URL: http://arxiv.org/abs/2406.08860v1
- Date: Thu, 13 Jun 2024 06:49:03 GMT
- Title: Plan, Generate and Complicate: Improving Low-resource Dialogue State Tracking via Easy-to-Difficult Zero-shot Data Augmentation
- Authors: Ming Gu, Yan Yang,
- Abstract summary: We propose EDZ-DA, an Easy-to-Difficult Zero-shot Data Augmentation framework for low-resource dialogue state tracking.
We also complicate the dialogues based on the domain relation to enhance the model's capability for co-reference slot tracking.
- Score: 5.042738414157664
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Data augmentation methods have been a promising direction to improve the performance of small models for low-resource dialogue state tracking. However, traditional methods rely on pre-defined user goals and neglect the importance of data complexity in this task. In this paper, we propose EDZ-DA, an Easy-to-Difficult Zero-shot Data Augmentation framework for low-resource dialogue state tracking that utilizes large language models to automatically catch the relationships of different domains and then generate the dialogue data. We also complicate the dialogues based on the domain relation to enhance the model's capability for co-reference slot tracking. Furthermore, we permute slot values to mitigate the influence of output orders and the problem of incomplete value generation. Experimental results illustrate the superiority of our proposed method compared to previous strong data augmentation baselines on MultiWOZ.
Related papers
- A Plug-and-Play Method for Rare Human-Object Interactions Detection by Bridging Domain Gap [50.079224604394]
We present a novel model-agnostic framework called textbfContext-textbfEnhanced textbfFeature textbfAment (CEFA)
CEFA consists of a feature alignment module and a context enhancement module.
Our method can serve as a plug-and-play module to improve the detection performance of HOI models on rare categories.
arXiv Detail & Related papers (2024-07-31T08:42:48Z) - Controllable and Diverse Data Augmentation with Large Language Model for Low-Resource Open-Domain Dialogue Generation [6.685921135304385]
We propose textbfSummary-based textbfDialogue textbfAugmentation with LLM.
Our approach enhances the controllability of LLM by using dialogue summaries as a planning tool.
Based on summaries, SDA can generate high-quality and diverse dialogue data even with a small seed dataset.
arXiv Detail & Related papers (2024-03-30T13:28:51Z) - TOD-Flow: Modeling the Structure of Task-Oriented Dialogues [77.15457469745364]
We propose a novel approach focusing on inferring the TOD-Flow graph from dialogue data annotated with dialog acts.
The inferred TOD-Flow graph can be easily integrated with any dialogue model to improve its prediction performance, transparency, and controllability.
arXiv Detail & Related papers (2023-12-07T20:06:23Z) - Zero-Shot Dialogue Relation Extraction by Relating Explainable Triggers
and Relation Names [28.441725610692714]
This paper proposes a method for leveraging the ability to capture triggers and relate them to previously unseen relation names.
Our experiments on a benchmark DialogRE dataset demonstrate that the proposed model achieves significant improvements for both seen and unseen relations.
arXiv Detail & Related papers (2023-06-09T07:10:01Z) - DiSTRICT: Dialogue State Tracking with Retriever Driven In-Context
Tuning [7.5700317050237365]
We propose DiSTRICT, a generalizable in-context tuning approach for Dialogue State Tracking (DST)
DSTRICT retrieves highly relevant training examples for a given dialogue to fine-tune the model without any hand-crafted templates.
Experiments with the MultiWOZ benchmark datasets show that DiSTRICT outperforms existing approaches in various zero-shot and few-shot settings.
arXiv Detail & Related papers (2022-12-06T09:40:15Z) - Weakly Supervised Data Augmentation Through Prompting for Dialogue
Understanding [103.94325597273316]
We present a novel approach that iterates on augmentation quality by applying weakly-supervised filters.
We evaluate our methods on the emotion and act classification tasks in DailyDialog and the intent classification task in Facebook Multilingual Task-Oriented Dialogue.
For DailyDialog specifically, using 10% of the ground truth data we outperform the current state-of-the-art model which uses 100% of the data.
arXiv Detail & Related papers (2022-10-25T17:01:30Z) - Self-augmented Data Selection for Few-shot Dialogue Generation [18.794770678708637]
We adopt the self-training framework to deal with the few-shot MR-to-Text generation problem.
We propose a novel data selection strategy to select the data that our generation model is most uncertain about.
arXiv Detail & Related papers (2022-05-19T16:25:50Z) - SDA: Improving Text Generation with Self Data Augmentation [88.24594090105899]
We propose to improve the standard maximum likelihood estimation (MLE) paradigm by incorporating a self-imitation-learning phase for automatic data augmentation.
Unlike most existing sentence-level augmentation strategies, our method is more general and could be easily adapted to any MLE-based training procedure.
arXiv Detail & Related papers (2021-01-02T01:15:57Z) - Enhancing Dialogue Generation via Multi-Level Contrastive Learning [57.005432249952406]
We propose a multi-level contrastive learning paradigm to model the fine-grained quality of the responses with respect to the query.
A Rank-aware (RC) network is designed to construct the multi-level contrastive optimization objectives.
We build a Knowledge Inference (KI) component to capture the keyword knowledge from the reference during training and exploit such information to encourage the generation of informative words.
arXiv Detail & Related papers (2020-09-19T02:41:04Z) - A Fast and Robust BERT-based Dialogue State Tracker for Schema-Guided
Dialogue Dataset [8.990035371365408]
We introduce FastSGT, a fast and robust BERT-based model for state tracking in goal-oriented dialogue systems.
The proposed model is designed for theGuided Dialogue dataset which contains natural language descriptions.
Our model keeps the efficiency in terms of computational and memory consumption while improving the accuracy significantly.
arXiv Detail & Related papers (2020-08-27T18:51:18Z) - Non-Autoregressive Dialog State Tracking [122.2328875457225]
We propose a novel framework of Non-Autoregressive Dialog State Tracking (NADST)
NADST can factor in potential dependencies among domains and slots to optimize the models towards better prediction of dialogue states as a complete set rather than separate slots.
Our results show that our model achieves the state-of-the-art joint accuracy across all domains on the MultiWOZ 2.1 corpus.
arXiv Detail & Related papers (2020-02-19T06:39:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.