Predicting Fault-Ride-Through Probability of Inverter-Dominated Power Grids using Machine Learning
- URL: http://arxiv.org/abs/2406.08917v1
- Date: Thu, 13 Jun 2024 08:28:14 GMT
- Title: Predicting Fault-Ride-Through Probability of Inverter-Dominated Power Grids using Machine Learning
- Authors: Christian Nauck, Anna Büttner, Sebastian Liemann, Frank Hellmann, Michael Lindner,
- Abstract summary: We analyze the potential of Machine Learning for predicting dynamic stability of future power grids with large shares of inverters.
We demonstrate that ML models accurately predict the fault-ride-through probability of synthetic power grids.
We also show that the ML models generalize to an IEEE-96 Test System.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Due to the increasing share of renewables, the analysis of the dynamical behavior of power grids gains importance. Effective risk assessments necessitate the analysis of large number of fault scenarios. The computational costs inherent in dynamic simulations impose constraints on the number of configurations that can be analyzed. Machine Learning (ML) has proven to efficiently predict complex power grid properties. Hence, we analyze the potential of ML for predicting dynamic stability of future power grids with large shares of inverters. For this purpose, we generate a new dataset consisting of synthetic power grid models and perform dynamical simulations. As targets for the ML training, we calculate the fault-ride-through probability, which we define as the probability of staying within a ride-through curve after a fault at a bus has been cleared. Importantly, we demonstrate that ML models accurately predict the fault-ride-through probability of synthetic power grids. Finally, we also show that the ML models generalize to an IEEE-96 Test System, which emphasizes the potential of deploying ML methods to study probabilistic stability of power grids.
Related papers
- Coherent Hierarchical Probabilistic Forecasting of Electric Vehicle Charging Demand [3.7690784039257292]
This paper studies the forecasting problem of multiple electric vehicle charging stations (EVCSs) in a hierarchical probabilistic manner.
For each charging station, a deep learning model based on a partial input convex neural network (PICNN) is trained to predict the day-ahead charging demand's conditional distribution.
Differentiable convex optimization layers (DCLs) are used to reconcile the scenarios sampled from the distributions to yield coherent scenarios.
arXiv Detail & Related papers (2024-11-01T03:35:04Z) - A Unified Approach for Learning the Dynamics of Power System Generators and Inverter-based Resources [12.723995633698514]
inverter-based resources (IBRs) for renewable energy integration and electrification greatly challenges power system dynamic analysis.
To account for both synchronous generators (SGs) and IBRs, this work presents an approach for learning the model of an individual dynamic component.
arXiv Detail & Related papers (2024-09-22T14:07:10Z) - Differential Evolution Algorithm based Hyper-Parameters Selection of
Transformer Neural Network Model for Load Forecasting [0.0]
Transformer models have the potential to improve Load forecasting because of their ability to learn long-range dependencies derived from their Attention Mechanism.
Our work compares the proposed Transformer based Neural Network model integrated with different metaheuristic algorithms by their performance in Load forecasting based on numerical metrics such as Mean Squared Error (MSE) and Mean Absolute Percentage Error (MAPE)
arXiv Detail & Related papers (2023-07-28T04:29:53Z) - Predicting Dynamic Stability from Static Features in Power Grid Models
using Machine Learning [0.0]
We propose a combination of network science metrics and machine learning models to predict the risk of desynchronisation events.
We train and test such models on simulated data from several synthetic test grids.
We find that the integrated models are capable of predicting desynchronisation events with an average precision greater than $0.996$ when averaging over all data sets.
arXiv Detail & Related papers (2022-10-17T17:16:48Z) - Pretraining Graph Neural Networks for few-shot Analog Circuit Modeling
and Design [68.1682448368636]
We present a supervised pretraining approach to learn circuit representations that can be adapted to new unseen topologies or unseen prediction tasks.
To cope with the variable topological structure of different circuits we describe each circuit as a graph and use graph neural networks (GNNs) to learn node embeddings.
We show that pretraining GNNs on prediction of output node voltages can encourage learning representations that can be adapted to new unseen topologies or prediction of new circuit level properties.
arXiv Detail & Related papers (2022-03-29T21:18:47Z) - Prediction of liquid fuel properties using machine learning models with
Gaussian processes and probabilistic conditional generative learning [56.67751936864119]
The present work aims to construct cheap-to-compute machine learning (ML) models to act as closure equations for predicting the physical properties of alternative fuels.
Those models can be trained using the database from MD simulations and/or experimental measurements in a data-fusion-fidelity approach.
The results show that ML models can predict accurately the fuel properties of a wide range of pressure and temperature conditions.
arXiv Detail & Related papers (2021-10-18T14:43:50Z) - CC-Cert: A Probabilistic Approach to Certify General Robustness of
Neural Networks [58.29502185344086]
In safety-critical machine learning applications, it is crucial to defend models against adversarial attacks.
It is important to provide provable guarantees for deep learning models against semantically meaningful input transformations.
We propose a new universal probabilistic certification approach based on Chernoff-Cramer bounds.
arXiv Detail & Related papers (2021-09-22T12:46:04Z) - Physics-Informed Gaussian Process Regression for Probabilistic States
Estimation and Forecasting in Power Grids [67.72249211312723]
Real-time state estimation and forecasting is critical for efficient operation of power grids.
PhI-GPR is presented and used for forecasting and estimating the phase angle, angular speed, and wind mechanical power of a three-generator power grid system.
We demonstrate that the proposed PhI-GPR method can accurately forecast and estimate both observed and unobserved states.
arXiv Detail & Related papers (2020-10-09T14:18:31Z) - Stochastically forced ensemble dynamic mode decomposition for
forecasting and analysis of near-periodic systems [65.44033635330604]
We introduce a novel load forecasting method in which observed dynamics are modeled as a forced linear system.
We show that its use of intrinsic linear dynamics offers a number of desirable properties in terms of interpretability and parsimony.
Results are presented for a test case using load data from an electrical grid.
arXiv Detail & Related papers (2020-10-08T20:25:52Z) - Multiplicative noise and heavy tails in stochastic optimization [62.993432503309485]
empirical optimization is central to modern machine learning, but its role in its success is still unclear.
We show that it commonly arises in parameters of discrete multiplicative noise due to variance.
A detailed analysis is conducted in which we describe on key factors, including recent step size, and data, all exhibit similar results on state-of-the-art neural network models.
arXiv Detail & Related papers (2020-06-11T09:58:01Z) - DISCO: Double Likelihood-free Inference Stochastic Control [29.84276469617019]
We propose to leverage the power of modern simulators and recent techniques in Bayesian statistics for likelihood-free inference.
The posterior distribution over simulation parameters is propagated through a potentially non-analytical model of the system.
Experiments show that the controller proposed attained superior performance and robustness on classical control and robotics tasks.
arXiv Detail & Related papers (2020-02-18T05:29:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.