A Unified Approach for Learning the Dynamics of Power System Generators and Inverter-based Resources
- URL: http://arxiv.org/abs/2409.14454v1
- Date: Sun, 22 Sep 2024 14:07:10 GMT
- Title: A Unified Approach for Learning the Dynamics of Power System Generators and Inverter-based Resources
- Authors: Shaohui Liu, Weiqian Cai, Hao Zhu, Brian Johnson,
- Abstract summary: inverter-based resources (IBRs) for renewable energy integration and electrification greatly challenges power system dynamic analysis.
To account for both synchronous generators (SGs) and IBRs, this work presents an approach for learning the model of an individual dynamic component.
- Score: 12.723995633698514
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The growing prevalence of inverter-based resources (IBRs) for renewable energy integration and electrification greatly challenges power system dynamic analysis. To account for both synchronous generators (SGs) and IBRs, this work presents an approach for learning the model of an individual dynamic component. The recurrent neural network (RNN) model is used to match the recursive structure in predicting the key dynamical states of a component from its terminal bus voltage and set-point input. To deal with the fast transients especially due to IBRs, we develop a Stable Integral (SI-)RNN to mimic high-order integral methods that can enhance the stability and accuracy for the dynamic learning task. We demonstrate that the proposed SI-RNN model not only can successfully predict the component's dynamic behaviors, but also offers the possibility of efficiently computing the dynamic sensitivity relative to a set-point change. These capabilities have been numerically validated based on full-order Electromagnetic Transient (EMT) simulations on a small test system with both SGs and IBRs, particularly for predicting the dynamics of grid-forming inverters.
Related papers
- A Realistic Simulation Framework for Analog/Digital Neuromorphic Architectures [73.65190161312555]
ARCANA is a spiking neural network simulator designed to account for the properties of mixed-signal neuromorphic circuits.
We show how the results obtained provide a reliable estimate of the behavior of the spiking neural network trained in software.
arXiv Detail & Related papers (2024-09-23T11:16:46Z) - Latent Space Energy-based Neural ODEs [73.01344439786524]
This paper introduces a novel family of deep dynamical models designed to represent continuous-time sequence data.
We train the model using maximum likelihood estimation with Markov chain Monte Carlo.
Experiments on oscillating systems, videos and real-world state sequences (MuJoCo) illustrate that ODEs with the learnable energy-based prior outperform existing counterparts.
arXiv Detail & Related papers (2024-09-05T18:14:22Z) - Differential Evolution Algorithm based Hyper-Parameters Selection of
Transformer Neural Network Model for Load Forecasting [0.0]
Transformer models have the potential to improve Load forecasting because of their ability to learn long-range dependencies derived from their Attention Mechanism.
Our work compares the proposed Transformer based Neural Network model integrated with different metaheuristic algorithms by their performance in Load forecasting based on numerical metrics such as Mean Squared Error (MSE) and Mean Absolute Percentage Error (MAPE)
arXiv Detail & Related papers (2023-07-28T04:29:53Z) - MINN: Learning the dynamics of differential-algebraic equations and
application to battery modeling [3.900623554490941]
We propose a novel architecture for generating model-integrated neural networks (MINN)
MINN allows integration on the level of learning physics-based dynamics of the system.
We apply the proposed neural network architecture to model the electrochemical dynamics of lithium-ion batteries.
arXiv Detail & Related papers (2023-04-27T09:11:40Z) - Characterizing the load profile in power grids by Koopman mode
decomposition of interconnected dynamics [0.6629765271909505]
This paper presents an interpretable machine learning approach that identifies load dynamics using data-driven methods.
We represent the load data using the Koopman operator, which is inherent to underlying dynamics.
We evaluate our approach using a large-scale dataset from a renewable electric power system within the continental European electricity system.
arXiv Detail & Related papers (2023-04-16T16:56:52Z) - ConCerNet: A Contrastive Learning Based Framework for Automated
Conservation Law Discovery and Trustworthy Dynamical System Prediction [82.81767856234956]
This paper proposes a new learning framework named ConCerNet to improve the trustworthiness of the DNN based dynamics modeling.
We show that our method consistently outperforms the baseline neural networks in both coordinate error and conservation metrics.
arXiv Detail & Related papers (2023-02-11T21:07:30Z) - Physics-Inspired Temporal Learning of Quadrotor Dynamics for Accurate
Model Predictive Trajectory Tracking [76.27433308688592]
Accurately modeling quadrotor's system dynamics is critical for guaranteeing agile, safe, and stable navigation.
We present a novel Physics-Inspired Temporal Convolutional Network (PI-TCN) approach to learning quadrotor's system dynamics purely from robot experience.
Our approach combines the expressive power of sparse temporal convolutions and dense feed-forward connections to make accurate system predictions.
arXiv Detail & Related papers (2022-06-07T13:51:35Z) - REMuS-GNN: A Rotation-Equivariant Model for Simulating Continuum
Dynamics [0.0]
We introduce REMuS-GNN, a rotation-equivariant multi-scale model for simulating continuum dynamical systems.
We demonstrate and evaluate this method on the incompressible flow around elliptical cylinders.
arXiv Detail & Related papers (2022-05-05T16:20:37Z) - Neural ODE and DAE Modules for Power System Dynamic Modeling [2.342020413587919]
In practical power systems, dynamic component modeling has long faced the challenges of model determination and model calibration.
In this paper, based on the general framework of neural ordinary differential equations (ODEs), a modified neural ODE module and a neural differential-algebraic equations (DAEs) module for power system dynamic component modeling are proposed.
The modules adopt an autoencoder to raise the dimension of state variables, model the dynamics of components with artificial neural networks (ANNs) and keep the numerical integration structure.
arXiv Detail & Related papers (2021-10-25T14:15:45Z) - Stochastically forced ensemble dynamic mode decomposition for
forecasting and analysis of near-periodic systems [65.44033635330604]
We introduce a novel load forecasting method in which observed dynamics are modeled as a forced linear system.
We show that its use of intrinsic linear dynamics offers a number of desirable properties in terms of interpretability and parsimony.
Results are presented for a test case using load data from an electrical grid.
arXiv Detail & Related papers (2020-10-08T20:25:52Z) - Training End-to-End Analog Neural Networks with Equilibrium Propagation [64.0476282000118]
We introduce a principled method to train end-to-end analog neural networks by gradient descent.
We show mathematically that a class of analog neural networks (called nonlinear resistive networks) are energy-based models.
Our work can guide the development of a new generation of ultra-fast, compact and low-power neural networks supporting on-chip learning.
arXiv Detail & Related papers (2020-06-02T23:38:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.