Schur's Positive-Definite Network: Deep Learning in the SPD cone with structure
- URL: http://arxiv.org/abs/2406.09023v1
- Date: Thu, 13 Jun 2024 11:56:20 GMT
- Title: Schur's Positive-Definite Network: Deep Learning in the SPD cone with structure
- Authors: Can Pouliquen, Mathurin Massias, Titouan Vayer,
- Abstract summary: Estimating matrices in the symmetric positive-definite (SPD) cone is of interest for many applications ranging from computer vision to graph learning.
We propose a novel and generic learning module with guaranteed SPD outputs called SpodNet.
- Score: 9.844808457315553
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Estimating matrices in the symmetric positive-definite (SPD) cone is of interest for many applications ranging from computer vision to graph learning. While there exist various convex optimization-based estimators, they remain limited in expressivity due to their model-based approach. The success of deep learning has thus led many to use neural networks to learn to estimate SPD matrices in a data-driven fashion. For learning structured outputs, one promising strategy involves architectures designed by unrolling iterative algorithms, which potentially benefit from inductive bias properties. However, designing correct unrolled architectures for SPD learning is difficult: they either do not guarantee that their output has all the desired properties, rely on heavy computations, or are overly restrained to specific matrices which hinders their expressivity. In this paper, we propose a novel and generic learning module with guaranteed SPD outputs called SpodNet, that also enables learning a larger class of functions than existing approaches. Notably, it solves the challenging task of learning jointly SPD and sparse matrices. Our experiments demonstrate the versatility of SpodNet layers.
Related papers
- Deep Recurrent Stochastic Configuration Networks for Modelling Nonlinear Dynamic Systems [3.8719670789415925]
This paper proposes a novel deep reservoir computing framework, termed deep recurrent configuration network (DeepRSCN)
DeepRSCNs are incrementally constructed, with all reservoir nodes directly linked to the final output.
Given a set of training samples, DeepRSCNs can quickly generate learning representations, which consist of random basis functions with cascaded input readout weights.
arXiv Detail & Related papers (2024-10-28T10:33:15Z) - Riemannian Self-Attention Mechanism for SPD Networks [34.794770395408335]
An SPD manifold self-attention mechanism (SMSA) is proposed in this paper.
An SMSA-based geometric learning module (SMSA-GL) is designed for the sake of improving the discrimination of structured representations.
arXiv Detail & Related papers (2023-11-28T12:34:46Z) - A Multi-Head Ensemble Multi-Task Learning Approach for Dynamical
Computation Offloading [62.34538208323411]
We propose a multi-head ensemble multi-task learning (MEMTL) approach with a shared backbone and multiple prediction heads (PHs)
MEMTL outperforms benchmark methods in both the inference accuracy and mean square error without requiring additional training data.
arXiv Detail & Related papers (2023-09-02T11:01:16Z) - Online Network Source Optimization with Graph-Kernel MAB [62.6067511147939]
We propose Grab-UCB, a graph- kernel multi-arms bandit algorithm to learn online the optimal source placement in large scale networks.
We describe the network processes with an adaptive graph dictionary model, which typically leads to sparse spectral representations.
We derive the performance guarantees that depend on network parameters, which further influence the learning curve of the sequential decision strategy.
arXiv Detail & Related papers (2023-07-07T15:03:42Z) - Semi-Parametric Inducing Point Networks and Neural Processes [15.948270454686197]
Semi-parametric inducing point networks (SPIN) can query the training set at inference time in a compute-efficient manner.
SPIN attains linear complexity via a cross-attention mechanism between datapoints inspired by inducing point methods.
In our experiments, SPIN reduces memory requirements, improves accuracy across a range of meta-learning tasks, and improves state-of-the-art performance on an important practical problem, genotype imputation.
arXiv Detail & Related papers (2022-05-24T01:42:46Z) - Neural Operator with Regularity Structure for Modeling Dynamics Driven
by SPDEs [70.51212431290611]
Partial differential equations (SPDEs) are significant tools for modeling dynamics in many areas including atmospheric sciences and physics.
We propose the Neural Operator with Regularity Structure (NORS) which incorporates the feature vectors for modeling dynamics driven by SPDEs.
We conduct experiments on various of SPDEs including the dynamic Phi41 model and the 2d Navier-Stokes equation.
arXiv Detail & Related papers (2022-04-13T08:53:41Z) - Connections between Numerical Algorithms for PDEs and Neural Networks [8.660429288575369]
We investigate numerous structural connections between numerical algorithms for partial differential equations (PDEs) and neural networks.
Our goal is to transfer the rich set of mathematical foundations from the world of PDEs to neural networks.
arXiv Detail & Related papers (2021-07-30T16:42:45Z) - Gone Fishing: Neural Active Learning with Fisher Embeddings [55.08537975896764]
There is an increasing need for active learning algorithms that are compatible with deep neural networks.
This article introduces BAIT, a practical representation of tractable, and high-performing active learning algorithm for neural networks.
arXiv Detail & Related papers (2021-06-17T17:26:31Z) - Designing Interpretable Approximations to Deep Reinforcement Learning [14.007731268271902]
Deep neural networks (DNNs) set the bar for algorithm performance.
It may not be feasible to actually use such high-performing DNNs in practice.
This work seeks to identify reduced models that not only preserve a desired performance level, but also, for example, succinctly explain the latent knowledge represented by a DNN.
arXiv Detail & Related papers (2020-10-28T06:33:09Z) - Deep Multi-Task Learning for Cooperative NOMA: System Design and
Principles [52.79089414630366]
We develop a novel deep cooperative NOMA scheme, drawing upon the recent advances in deep learning (DL)
We develop a novel hybrid-cascaded deep neural network (DNN) architecture such that the entire system can be optimized in a holistic manner.
arXiv Detail & Related papers (2020-07-27T12:38:37Z) - Belief Propagation Reloaded: Learning BP-Layers for Labeling Problems [83.98774574197613]
We take one of the simplest inference methods, a truncated max-product Belief propagation, and add what is necessary to make it a proper component of a deep learning model.
This BP-Layer can be used as the final or an intermediate block in convolutional neural networks (CNNs)
The model is applicable to a range of dense prediction problems, is well-trainable and provides parameter-efficient and robust solutions in stereo, optical flow and semantic segmentation.
arXiv Detail & Related papers (2020-03-13T13:11:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.