Suitability of KANs for Computer Vision: A preliminary investigation
- URL: http://arxiv.org/abs/2406.09087v2
- Date: Thu, 17 Oct 2024 23:02:17 GMT
- Title: Suitability of KANs for Computer Vision: A preliminary investigation
- Authors: Basim Azam, Naveed Akhtar,
- Abstract summary: Kolmogorov-Arnold Networks (KANs) introduce a paradigm of neural modeling that implements learnable functions on the edges of the networks.
This work assesses the applicability and efficacy of KANs in visual modeling, focusing on fundamental recognition and segmentation tasks.
- Score: 28.030708956348864
- License:
- Abstract: Kolmogorov-Arnold Networks (KANs) introduce a paradigm of neural modeling that implements learnable functions on the edges of the networks, diverging from the traditional node-centric activations in neural networks. This work assesses the applicability and efficacy of KANs in visual modeling, focusing on fundamental recognition and segmentation tasks. We mainly analyze the performance and efficiency of different network architectures built using KAN concepts along with conventional building blocks of convolutional and linear layers, enabling a comparative analysis with the conventional models. Our findings are aimed at contributing to understanding the potential of KANs in computer vision, highlighting both their strengths and areas for further research. Our evaluation point toward the fact that while KAN-based architectures perform in line with the original claims, it may often be important to employ more complex functions on the network edges to retain the performance advantage of KANs on more complex visual data.
Related papers
- SpikeAtConv: An Integrated Spiking-Convolutional Attention Architecture for Energy-Efficient Neuromorphic Vision Processing [11.687193535939798]
Spiking Neural Networks (SNNs) offer a biologically inspired alternative to conventional artificial neural networks.
SNNs have yet to achieve competitive performance on complex visual tasks, such as image classification.
This study introduces a novel SNN architecture designed to enhance efficacy and task accuracy.
arXiv Detail & Related papers (2024-11-26T13:57:38Z) - Can KAN Work? Exploring the Potential of Kolmogorov-Arnold Networks in Computer Vision [6.554163686640315]
This study first analyzes the potential of KAN in computer vision tasks, evaluating the performance of KAN and its convolutional variants in image classification and semantic segmentation.
Results indicate that while KAN exhibits stronger fitting capabilities, it is highly sensitive to noise, limiting its robustness.
To address this challenge, we propose a regularization method and introduce a Segment Deactivation technique.
arXiv Detail & Related papers (2024-11-11T05:44:48Z) - A Survey on Kolmogorov-Arnold Network [0.0]
Review explores the theoretical foundations, evolution, applications, and future potential of Kolmogorov-Arnold Networks (KAN)
KANs distinguish themselves from traditional neural networks by using learnable, spline- parameterized functions instead of fixed activation functions.
This paper highlights KAN's role in modern neural architectures and outlines future directions to improve its computational efficiency, interpretability, and scalability in data-intensive applications.
arXiv Detail & Related papers (2024-11-09T05:54:17Z) - Residual Kolmogorov-Arnold Network for Enhanced Deep Learning [0.5852077003870417]
We introduce Residual Arnold, which incorporates the Kolmogorov-KAN framework as a residual component.
Our results demonstrate the potential of RKAN to enhance the capabilities of deep CNNs in visual data.
arXiv Detail & Related papers (2024-10-07T21:12:32Z) - Towards Scalable and Versatile Weight Space Learning [51.78426981947659]
This paper introduces the SANE approach to weight-space learning.
Our method extends the idea of hyper-representations towards sequential processing of subsets of neural network weights.
arXiv Detail & Related papers (2024-06-14T13:12:07Z) - U-KAN Makes Strong Backbone for Medical Image Segmentation and Generation [48.40120035775506]
Kolmogorov-Arnold Networks (KANs) reshape the neural network learning via the stack of non-linear learnable activation functions.
We investigate, modify and re-design the established U-Net pipeline by integrating the dedicated KAN layers on the tokenized intermediate representation, termed U-KAN.
We further delved into the potential of U-KAN as an alternative U-Net noise predictor in diffusion models, demonstrating its applicability in generating task-oriented model architectures.
arXiv Detail & Related papers (2024-06-05T04:13:03Z) - Visual Prompting Upgrades Neural Network Sparsification: A Data-Model Perspective [64.04617968947697]
We introduce a novel data-model co-design perspective: to promote superior weight sparsity.
Specifically, customized Visual Prompts are mounted to upgrade neural Network sparsification in our proposed VPNs framework.
arXiv Detail & Related papers (2023-12-03T13:50:24Z) - ASU-CNN: An Efficient Deep Architecture for Image Classification and
Feature Visualizations [0.0]
Activation functions play a decisive role in determining the capacity of Deep Neural Networks.
In this paper, a Convolutional Neural Network model named as ASU-CNN is proposed.
The network achieved promising results on both training and testing data for the classification of CIFAR-10.
arXiv Detail & Related papers (2023-05-28T16:52:25Z) - Influencer Detection with Dynamic Graph Neural Networks [56.1837101824783]
We investigate different dynamic Graph Neural Networks (GNNs) configurations for influencer detection.
We show that using deep multi-head attention in GNN and encoding temporal attributes significantly improves performance.
arXiv Detail & Related papers (2022-11-15T13:00:25Z) - Variational Structured Attention Networks for Deep Visual Representation
Learning [49.80498066480928]
We propose a unified deep framework to jointly learn both spatial attention maps and channel attention in a principled manner.
Specifically, we integrate the estimation and the interaction of the attentions within a probabilistic representation learning framework.
We implement the inference rules within the neural network, thus allowing for end-to-end learning of the probabilistic and the CNN front-end parameters.
arXiv Detail & Related papers (2021-03-05T07:37:24Z) - Learning Connectivity of Neural Networks from a Topological Perspective [80.35103711638548]
We propose a topological perspective to represent a network into a complete graph for analysis.
By assigning learnable parameters to the edges which reflect the magnitude of connections, the learning process can be performed in a differentiable manner.
This learning process is compatible with existing networks and owns adaptability to larger search spaces and different tasks.
arXiv Detail & Related papers (2020-08-19T04:53:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.