Simulations of distributed-phase-reference quantum key distribution protocols
- URL: http://arxiv.org/abs/2406.09091v1
- Date: Thu, 13 Jun 2024 13:19:04 GMT
- Title: Simulations of distributed-phase-reference quantum key distribution protocols
- Authors: Venkat Abhignan, Abhishek Jamunkar, Gokul Nair, Mohit Mittal, Megha Shrivastava,
- Abstract summary: Quantum key distribution protocols provide a secret key between two users with security guaranteed by the laws of quantum mechanics.
We perform simulations on the Interconnect platform to characterise the practical implementation of these devices.
We briefly describe and simulate some possible eavesdropping attempts, backflash attack, trojan-horse attack and detector-blinding attack exploiting the device imperfections.
- Score: 0.1398098625978622
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum technology can enable secure communication for cryptography purposes using quantum key distribution. Quantum key distribution protocols provide a secret key between two users with security guaranteed by the laws of quantum mechanics. To define the proper implementation of a quantum key distribution system using a particular cryptography protocol, it is crucial to critically and meticulously assess the device's performance due to technological limitations in the components used. We perform simulations on the ANSYS Interconnect platform to characterise the practical implementation of these devices using distributed-phase-reference protocols differential-phase-shift and coherent-one-way quantum key distribution. Further, we briefly describe and simulate some possible eavesdropping attempts, backflash attack, trojan-horse attack and detector-blinding attack exploiting the device imperfections.
Related papers
- Practical hybrid PQC-QKD protocols with enhanced security and performance [44.8840598334124]
We develop hybrid protocols by which QKD and PQC inter-operate within a joint quantum-classical network.
In particular, we consider different hybrid designs that may offer enhanced speed and/or security over the individual performance of either approach.
arXiv Detail & Related papers (2024-11-02T00:02:01Z) - Towards efficient and secure quantum-classical communication networks [47.27205216718476]
There are two primary approaches to achieving quantum-resistant security: quantum key distribution (QKD) and post-quantum cryptography (PQC)
We introduce the pros and cons of these protocols and explore how they can be combined to achieve a higher level of security and/or improved performance in key distribution.
We hope our discussion inspires further research into the design of hybrid cryptographic protocols for quantum-classical communication networks.
arXiv Detail & Related papers (2024-11-01T23:36:19Z) - Twin-field-based multi-party quantum key agreement [0.0]
We study a method to extend the twin-field key distribution protocol to a scheme for multi-party quantum key agreement.
We derive the key rate based on the entanglement-based source-replacement scheme.
arXiv Detail & Related papers (2024-09-06T11:51:10Z) - Guarantees on the structure of experimental quantum networks [105.13377158844727]
Quantum networks connect and supply a large number of nodes with multi-party quantum resources for secure communication, networked quantum computing and distributed sensing.
As these networks grow in size, certification tools will be required to answer questions regarding their properties.
We demonstrate a general method to guarantee that certain correlations cannot be generated in a given quantum network.
arXiv Detail & Related papers (2024-03-04T19:00:00Z) - Practical quantum secure direct communication with squeezed states [55.41644538483948]
We report the first table-top experimental demonstration of a CV-QSDC system and assess its security.
This realization paves the way into future threat-less quantum metropolitan networks, compatible with coexisting advanced wavelength division multiplexing (WDM) systems.
arXiv Detail & Related papers (2023-06-25T19:23:42Z) - Quantum key distribution with post-processing driven by physical
unclonable functions [2.233624388203003]
Quantum key-distribution protocols allow two honest distant parties to establish a common truly random secret key in the presence of powerful adversaries.
This pre-shared secret key is used mainly for authentication purposes in the post-processing of classical data.
We discuss the conditions under which physical unclonable function can be integrated in currently available quantum key-distribution systems.
arXiv Detail & Related papers (2023-02-15T12:33:01Z) - Authenticated Multiparty Quantum Key Agreement for Optical-Ring Quantum
Communication Networks [7.753213765615376]
In the key agreement protocols, an attacker can impersonate a legal user to participate in the negotiation process and eavesdrop the agreement key easily.
This is often overlooked in most quantum key agreement protocols, which makes them insecure in practical implementation.
Considering this problem, the function of authenticating the user's identity is added in the proposed protocol.
arXiv Detail & Related papers (2021-12-15T07:16:09Z) - Interactive Protocols for Classically-Verifiable Quantum Advantage [46.093185827838035]
"Interactions" between a prover and a verifier can bridge the gap between verifiability and implementation.
We demonstrate the first implementation of an interactive quantum advantage protocol, using an ion trap quantum computer.
arXiv Detail & Related papers (2021-12-09T19:00:00Z) - Multi-party Semi-quantum Secret Sharing Protocol based on Measure-flip and Reflect Operations [1.3812010983144802]
Semi-quantum secret sharing (SQSS) protocols serve as fundamental frameworks in quantum secure multi-party computations.
This paper proposes a novel SQSS protocol based on multi-particle GHZ states.
arXiv Detail & Related papers (2021-09-03T08:52:17Z) - A coherence-witnessing game and applications to semi-device-independent
quantum key distribution [1.024113475677323]
We introduce a coherence-based, semi-device-independent, semi-quantum key distribution protocol built upon a noise-robust version of a coherence equality game.
Security is proven in the bounded quantum storage model, requiring users to implement only classical operations.
arXiv Detail & Related papers (2021-03-11T17:55:34Z) - Backflash Light as a Security Vulnerability in Quantum Key Distribution
Systems [77.34726150561087]
We review the security vulnerabilities of quantum key distribution (QKD) systems.
We mainly focus on a particular effect known as backflash light, which can be a source of eavesdropping attacks.
arXiv Detail & Related papers (2020-03-23T18:23:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.