Time-Series Forecasting for Out-of-Distribution Generalization Using Invariant Learning
- URL: http://arxiv.org/abs/2406.09130v1
- Date: Thu, 13 Jun 2024 14:01:34 GMT
- Title: Time-Series Forecasting for Out-of-Distribution Generalization Using Invariant Learning
- Authors: Haoxin Liu, Harshavardhan Kamarthi, Lingkai Kong, Zhiyuan Zhao, Chao Zhang, B. Aditya Prakash,
- Abstract summary: Time-series forecasting (TSF) finds broad applications in real-world scenarios.
In this paper, we aim to alleviate the inherent OOD problem in TSF via invariant learning.
We propose FOIL, a model-agnostic framework that enables timeseries Forecasting for Out-of-distribution generalization via Invariant Learning.
- Score: 33.68869067717862
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Time-series forecasting (TSF) finds broad applications in real-world scenarios. Due to the dynamic nature of time-series data, it is crucial to equip TSF models with out-of-distribution (OOD) generalization abilities, as historical training data and future test data can have different distributions. In this paper, we aim to alleviate the inherent OOD problem in TSF via invariant learning. We identify fundamental challenges of invariant learning for TSF. First, the target variables in TSF may not be sufficiently determined by the input due to unobserved core variables in TSF, breaking the conventional assumption of invariant learning. Second, time-series datasets lack adequate environment labels, while existing environmental inference methods are not suitable for TSF. To address these challenges, we propose FOIL, a model-agnostic framework that enables timeseries Forecasting for Out-of-distribution generalization via Invariant Learning. FOIL employs a novel surrogate loss to mitigate the impact of unobserved variables. Further, FOIL implements a joint optimization by alternately inferring environments effectively with a multi-head network while preserving the temporal adjacency structure, and learning invariant representations across inferred environments for OOD generalized TSF. We demonstrate that the proposed FOIL significantly improves the performance of various TSF models, achieving gains of up to 85%.
Related papers
- Is Precise Recovery Necessary? A Task-Oriented Imputation Approach for Time Series Forecasting on Variable Subset [27.180618587832463]
We propose Task-Oriented Imputation for Variable Subset Forecasting (TOI-VSF) for time series forecasting.
TOI-VSF incorporates a self-supervised imputation module, agnostic to the forecasting model, designed to fill in missing variables.
Extensive experiments across four datasets demonstrate the superiority of TOI-VSF, outperforming baseline methods by $15%$ on average.
arXiv Detail & Related papers (2024-11-15T04:00:54Z) - Adapting to Length Shift: FlexiLength Network for Trajectory Prediction [53.637837706712794]
Trajectory prediction plays an important role in various applications, including autonomous driving, robotics, and scene understanding.
Existing approaches mainly focus on developing compact neural networks to increase prediction precision on public datasets, typically employing a standardized input duration.
We introduce a general and effective framework, the FlexiLength Network (FLN), to enhance the robustness of existing trajectory prediction against varying observation periods.
arXiv Detail & Related papers (2024-03-31T17:18:57Z) - Test-Time Domain Generalization for Face Anti-Spoofing [60.94384914275116]
Face Anti-Spoofing (FAS) is pivotal in safeguarding facial recognition systems against presentation attacks.
We introduce a novel Test-Time Domain Generalization framework for FAS, which leverages the testing data to boost the model's generalizability.
Our method, consisting of Test-Time Style Projection (TTSP) and Diverse Style Shifts Simulation (DSSS), effectively projects the unseen data to the seen domain space.
arXiv Detail & Related papers (2024-03-28T11:50:23Z) - Unified Source-Free Domain Adaptation [44.95240684589647]
In pursuit of transferring a source model to a target domain without access to the source training data, Source-Free Domain Adaptation (SFDA) has been extensively explored.
We propose a novel approach called Latent Causal Factors Discovery (LCFD)
In contrast to previous alternatives that emphasize learning the statistical description of reality, we formulate LCFD from a causality perspective.
arXiv Detail & Related papers (2024-03-12T12:40:08Z) - CLeaRForecast: Contrastive Learning of High-Purity Representations for
Time Series Forecasting [2.5816901096123863]
Time series forecasting (TSF) holds significant importance in modern society, spanning numerous domains.
Previous representation learning-based TSF algorithms typically embrace a contrastive learning paradigm featuring segregated trend-periodicity representations.
We propose CLeaRForecast, a novel contrastive learning framework to learn high-purity time series representations with proposed sample, feature, and architecture purifying methods.
arXiv Detail & Related papers (2023-12-10T04:37:43Z) - Consistency Regularization for Generalizable Source-free Domain
Adaptation [62.654883736925456]
Source-free domain adaptation (SFDA) aims to adapt a well-trained source model to an unlabelled target domain without accessing the source dataset.
Existing SFDA methods ONLY assess their adapted models on the target training set, neglecting the data from unseen but identically distributed testing sets.
We propose a consistency regularization framework to develop a more generalizable SFDA method.
arXiv Detail & Related papers (2023-08-03T07:45:53Z) - Learning Informative Representation for Fairness-aware Multivariate
Time-series Forecasting: A Group-based Perspective [50.093280002375984]
Performance unfairness among variables widely exists in multivariate time series (MTS) forecasting models.
We propose a novel framework, named FairFor, for fairness-aware MTS forecasting.
arXiv Detail & Related papers (2023-01-27T04:54:12Z) - Multi-Variate Time Series Forecasting on Variable Subsets [18.883419091780265]
Variables are absent during inference because of long-term data loss or high -> low-resource domain shift between train / test.
We propose a non-parametric, wrapper technique that can be applied on top any existing forecast models.
We show that our technique is able to recover close to 95% performance of the models even when only 15% of the original variables are present.
arXiv Detail & Related papers (2022-06-25T11:31:30Z) - Regularizing Variational Autoencoder with Diversity and Uncertainty
Awareness [61.827054365139645]
Variational Autoencoder (VAE) approximates the posterior of latent variables based on amortized variational inference.
We propose an alternative model, DU-VAE, for learning a more Diverse and less Uncertain latent space.
arXiv Detail & Related papers (2021-10-24T07:58:13Z) - Exploring Complementary Strengths of Invariant and Equivariant
Representations for Few-Shot Learning [96.75889543560497]
In many real-world problems, collecting a large number of labeled samples is infeasible.
Few-shot learning is the dominant approach to address this issue, where the objective is to quickly adapt to novel categories in presence of a limited number of samples.
We propose a novel training mechanism that simultaneously enforces equivariance and invariance to a general set of geometric transformations.
arXiv Detail & Related papers (2021-03-01T21:14:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.