Beyond Fixed Variables: Expanding-variate Time Series Forecasting via Flat Scheme and Spatio-temporal Focal Learning
- URL: http://arxiv.org/abs/2502.15296v1
- Date: Fri, 21 Feb 2025 08:43:26 GMT
- Title: Beyond Fixed Variables: Expanding-variate Time Series Forecasting via Flat Scheme and Spatio-temporal Focal Learning
- Authors: Minbo Ma, Kai Tang, Huan Li, Fei Teng, Dalin Zhang, Tianrui Li,
- Abstract summary: In real-world applications, Cyber-Physical Systems often expand as new sensors are, increasing variables in MTSF.<n>This task presents unique challenges, specifically (1) handling inconsistent data caused by adding new variables, and (2) addressing imbalanced-temporal learning.<n>To address these challenges, we propose STEV, a flexible-temporal forecasting framework.
- Score: 9.205228068704141
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Multivariate Time Series Forecasting (MTSF) has long been a key research focus. Traditionally, these studies assume a fixed number of variables, but in real-world applications, Cyber-Physical Systems often expand as new sensors are deployed, increasing variables in MTSF. In light of this, we introduce a novel task, Expanding-variate Time Series Forecasting (EVTSF). This task presents unique challenges, specifically (1) handling inconsistent data shapes caused by adding new variables, and (2) addressing imbalanced spatio-temporal learning, where expanding variables have limited observed data due to the necessity for timely operation. To address these challenges, we propose STEV, a flexible spatio-temporal forecasting framework. STEV includes a new Flat Scheme to tackle the inconsistent data shape issue, which extends the graph-based spatio-temporal modeling architecture into 1D space by flattening the 2D samples along the variable dimension, making the model variable-scale-agnostic while still preserving dynamic spatial correlations through a holistic graph. We introduce a novel Spatio-temporal Focal Learning strategy that incorporates a negative filter to resolve potential conflicts between contrastive learning and graph representation, and a focal contrastive loss as its core to guide the framework to focus on optimizing the expanding variables. We benchmark EVTSF performance using three real-world datasets and compare it against three potential solutions employing SOTA MTSF models tailored for EVSTF. Experimental results show that STEV significantly outperforms its competitors, particularly on expanding variables. Notably, STEV, with only 5% of observations from the expanding period, is on par with SOTA MTSF models trained with complete observations. Further exploration of various expanding strategies underscores the generalizability of STEV in real-world applications.
Related papers
- UniSTD: Towards Unified Spatio-Temporal Learning across Diverse Disciplines [64.84631333071728]
We introduce bfUnistage, a unified Transformer-based framework fortemporal modeling.
Our work demonstrates that a task-specific vision-text can build a generalizable model fortemporal learning.
We also introduce a temporal module to incorporate temporal dynamics explicitly.
arXiv Detail & Related papers (2025-03-26T17:33:23Z) - PFformer: A Position-Free Transformer Variant for Extreme-Adaptive Multivariate Time Series Forecasting [9.511600544581425]
PFformer is a position-free Transformer-based model designed for single-target MTS forecasting.
PFformer integrates two novel embedding strategies: Enhanced Feature-based Embedding (EFE) and Auto-Encoder-based Embedding (AEE)
arXiv Detail & Related papers (2025-02-27T22:21:27Z) - ST-ReP: Learning Predictive Representations Efficiently for Spatial-Temporal Forecasting [7.637123047745445]
Self-supervised methods are increasingly adapted to learn spatial-temporal representations.<n>Current value reconstruction and future value prediction are integrated into the pre-training framework.<n>Multi-time scale analysis is incorporated into the self-supervised loss to enhance predictive capability.
arXiv Detail & Related papers (2024-12-19T05:33:55Z) - FlexTSF: A Universal Forecasting Model for Time Series with Variable Regularities [17.164913785452367]
We propose FlexTSF, a universal time series forecasting model that possesses better generalization and supports both regular and irregular time series.
Experiments on 12 datasets show that FlexTSF outperforms state-of-the-art forecasting models respectively designed for regular and irregular time series.
arXiv Detail & Related papers (2024-10-30T16:14:09Z) - GinAR: An End-To-End Multivariate Time Series Forecasting Model Suitable for Variable Missing [21.980379175333443]
We propose a novel Graph Interpolation Attention Recursive Network (named GinAR) to model the spatial-temporal dependencies over the limited collected data for forecasting.
In GinAR, it consists of two key components, that is, attention and adaptive graph convolution.
Experiments conducted on five real-world datasets demonstrate that GinAR outperforms 11 SOTA baselines, and even when 90% of variables are missing, it can still accurately predict the future values of all variables.
arXiv Detail & Related papers (2024-05-18T16:42:44Z) - Multi-Modality Spatio-Temporal Forecasting via Self-Supervised Learning [11.19088022423885]
We propose a novel MoST learning framework via Self-Supervised Learning, namely MoSSL.
Results on two real-world MoST datasets verify the superiority of our approach compared with the state-of-the-art baselines.
arXiv Detail & Related papers (2024-05-06T08:24:06Z) - Adapting to Length Shift: FlexiLength Network for Trajectory Prediction [53.637837706712794]
Trajectory prediction plays an important role in various applications, including autonomous driving, robotics, and scene understanding.
Existing approaches mainly focus on developing compact neural networks to increase prediction precision on public datasets, typically employing a standardized input duration.
We introduce a general and effective framework, the FlexiLength Network (FLN), to enhance the robustness of existing trajectory prediction against varying observation periods.
arXiv Detail & Related papers (2024-03-31T17:18:57Z) - PDETime: Rethinking Long-Term Multivariate Time Series Forecasting from
the perspective of partial differential equations [49.80959046861793]
We present PDETime, a novel LMTF model inspired by the principles of Neural PDE solvers.
Our experimentation across seven diversetemporal real-world LMTF datasets reveals that PDETime adapts effectively to the intrinsic nature of the data.
arXiv Detail & Related papers (2024-02-25T17:39:44Z) - Attractor Memory for Long-Term Time Series Forecasting: A Chaos Perspective [63.60312929416228]
textbftextitAttraos incorporates chaos theory into long-term time series forecasting.
We show that Attraos outperforms various LTSF methods on mainstream datasets and chaotic datasets with only one-twelfth of the parameters compared to PatchTST.
arXiv Detail & Related papers (2024-02-18T05:35:01Z) - Rethinking Urban Mobility Prediction: A Super-Multivariate Time Series
Forecasting Approach [71.67506068703314]
Long-term urban mobility predictions play a crucial role in the effective management of urban facilities and services.
Traditionally, urban mobility data has been structured as videos, treating longitude and latitude as fundamental pixels.
In our research, we introduce a fresh perspective on urban mobility prediction.
Instead of oversimplifying urban mobility data as traditional video data, we regard it as a complex time series.
arXiv Detail & Related papers (2023-12-04T07:39:05Z) - Multivariate Time Series Forecasting with Dynamic Graph Neural ODEs [65.18780403244178]
We propose a continuous model to forecast Multivariate Time series with dynamic Graph neural Ordinary Differential Equations (MTGODE)
Specifically, we first abstract multivariate time series into dynamic graphs with time-evolving node features and unknown graph structures.
Then, we design and solve a neural ODE to complement missing graph topologies and unify both spatial and temporal message passing.
arXiv Detail & Related papers (2022-02-17T02:17:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.