論文の概要: RH-SQL: Refined Schema and Hardness Prompt for Text-to-SQL
- arxiv url: http://arxiv.org/abs/2406.09133v1
- Date: Thu, 13 Jun 2024 14:04:34 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-14 17:44:14.874862
- Title: RH-SQL: Refined Schema and Hardness Prompt for Text-to-SQL
- Title(参考訳): RH-SQL: テキストからSQLへの変換スキーマとハードネスプロンプト
- Authors: Jiawen Yi, Guo Chen, Zixiang Shen,
- Abstract要約: 本稿では,精製実行モデルとハードネス・プロンプトに基づくテキスト・トゥ・エクセルの手法を提案する。
パフォーマンスを維持しながら、ストレージとトレーニングのコストを削減する。
スパイダーデータセットに関する我々の実験は、特に大規模なLMを用いて、82.6%の異常な精度(EX)を達成した。
- 参考スコア(独自算出の注目度): 1.734218686180302
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Text-to-SQL is a technology that converts natural language queries into the structured query language SQL. A novel research approach that has recently gained attention focuses on methods based on the complexity of SQL queries, achieving notable performance improvements. However, existing methods entail significant storage and training costs, which hampers their practical application. To address this issue, this paper introduces a method for Text-to-SQL based on Refined Schema and Hardness Prompt. By filtering out low-relevance schema information with a refined schema and identifying query hardness through a Language Model (LM) to form prompts, this method reduces storage and training costs while maintaining performance. It's worth mentioning that this method is applicable to any sequence-to-sequence (seq2seq) LM. Our experiments on the Spider dataset, specifically with large-scale LMs, achieved an exceptional Execution accuracy (EX) of 82.6%, demonstrating the effectiveness and greater suitability of our method for real-world applications.
- Abstract(参考訳): Text-to-SQLは、自然言語クエリを構造化クエリ言語SQLに変換する技術である。
最近注目された新しい研究アプローチは、SQLクエリの複雑さに基づいたメソッドに焦点を当て、注目すべきパフォーマンス改善を実現している。
しかし、既存の手法ではストレージとトレーニングにかなりのコストがかかるため、実用性を損なうことになる。
この問題に対処するために,Refined Schema と Hardness Prompt に基づく Text-to-SQL の手法を提案する。
低関連スキーマ情報を洗練されたスキーマでフィルタリングし、言語モデル(LM)を通してクエリの難易度を特定してプロンプトを形成することにより、性能を維持しながら、ストレージとトレーニングコストを削減できる。
この方法は、任意のシーケンス・ツー・シーケンス(seq2seq) LMに適用可能であることに注意してください。
スパイダーデータセットに関する実験は、特に大規模なLMを用いて、82.6%の例外的実行精度(EX)を達成し、実世界の応用における我々の方法の有効性と適合性を実証した。
関連論文リスト
- RB-SQL: A Retrieval-based LLM Framework for Text-to-SQL [48.516004807486745]
文脈内学習を伴う大規模言語モデル(LLM)は、テキスト・ツー・タスクの性能を大幅に改善した。
In-context prompt Engineering のための新しい検索ベースフレームワーク RB- を提案する。
実験により,我々のモデルは,公開データセットのBIRDとSpiderの競合ベースラインよりも優れた性能が得られることが示された。
論文 参考訳(メタデータ) (2024-07-11T08:19:58Z) - CHESS: Contextual Harnessing for Efficient SQL Synthesis [1.9506402593665235]
我々は,関連するデータとコンテキストを検索し,効率的なスキーマを選択し,正確で効率的なクエリを合成する新しいパイプラインを提案する。
提案手法は,BIRDデータセットの領域横断における最先端性能を実現する。
論文 参考訳(メタデータ) (2024-05-27T01:54:16Z) - EPI-SQL: Enhancing Text-to-SQL Translation with Error-Prevention Instructions [0.5755004576310334]
本稿では,Large Language Models(LLMs)を利用した新しい手法フレームワークであるEPIを導入し,テキスト・ツー・ワン・タスクの性能向上を図る。
EPI-は4段階のプロセスで動作し、一般的なエラー防止命令(EPI)を生成する。
タスク固有のガイダンスを提供し、手元にあるタスクの潜在的なエラーを回避することができる。
論文 参考訳(メタデータ) (2024-04-21T03:52:46Z) - PET-SQL: A Prompt-Enhanced Two-Round Refinement of Text-to-SQL with Cross-consistency [19.067737007347613]
スパイダーベンチマークで新しいSOTA結果が得られ、実行精度は87.6%である。
提案手法は, 87.6%の精度で, スパイダーベンチマークで新しいSOTA結果が得られる。
論文 参考訳(メタデータ) (2024-03-13T02:32:41Z) - SQLPrompt: In-Context Text-to-SQL with Minimal Labeled Data [54.69489315952524]
Prompt"は、Text-to-LLMのいくつかのショットプロンプト機能を改善するように設計されている。
Prompt"は、ラベル付きデータが少なく、テキスト内学習における従来のアプローチよりも大きなマージンで優れている。
emphPromptはテキスト内学習における従来の手法よりも優れており,ラベル付きデータはほとんどない。
論文 参考訳(メタデータ) (2023-11-06T05:24:06Z) - Text-to-SQL Empowered by Large Language Models: A Benchmark Evaluation [76.76046657162306]
大規模言語モデル(LLM)はテキスト・ツー・タスクの新しいパラダイムとして登場した。
大規模言語モデル(LLM)はテキスト・ツー・タスクの新しいパラダイムとして登場した。
論文 参考訳(メタデータ) (2023-08-29T14:59:54Z) - SQL-PaLM: Improved Large Language Model Adaptation for Text-to-SQL (extended) [53.95151604061761]
本稿では,大規模言語モデル(LLM)を用いたテキスト・ツー・フィルタリングのフレームワークを提案する。
数発のプロンプトで、実行ベースのエラー解析による一貫性復号化の有効性について検討する。
命令の微調整により、チューニングされたLLMの性能に影響を及ぼす重要なパラダイムの理解を深める。
論文 参考訳(メタデータ) (2023-05-26T21:39:05Z) - A Survey on Text-to-SQL Parsing: Concepts, Methods, and Future
Directions [102.8606542189429]
テキストからコーパスへのパースの目的は、自然言語(NL)質問をデータベースが提供するエビデンスに基づいて、対応する構造化クエリ言語()に変換することである。
ディープニューラルネットワークは、入力NL質問から出力クエリへのマッピング関数を自動的に学習するニューラルジェネレーションモデルによって、このタスクを大幅に進歩させた。
論文 参考訳(メタデータ) (2022-08-29T14:24:13Z) - S$^2$SQL: Injecting Syntax to Question-Schema Interaction Graph Encoder
for Text-to-SQL Parsers [66.78665327694625]
テキスト-関係解析のための質問-エンコーダグラフに構文を注入するS$2$を提案する。
また、疎結合制約を用いて多様なエッジ埋め込みを誘導し、ネットワークの性能をさらに向上させる。
スパイダーとロバスト性設定の実験は、提案手法が事前学習モデルを使用する場合、既存のすべての手法より優れていることを示した。
論文 参考訳(メタデータ) (2022-03-14T09:49:15Z) - Improving Text-to-SQL with Schema Dependency Learning [22.07452161565993]
実行誘導デコーディングは、推論プロセスを遅くし、多くの現実世界のアプリケーションに不満足なデータベース実行に依存している。
質問とスキーマ間のインタラクションを効果的にキャプチャするネットワークをガイドするために、依存性ガイド付きマルチタスクテキストタスクモデル(SD)を紹介します。
論文 参考訳(メタデータ) (2021-03-07T16:56:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。