Investigating the translation capabilities of Large Language Models trained on parallel data only
- URL: http://arxiv.org/abs/2406.09140v1
- Date: Thu, 13 Jun 2024 14:08:56 GMT
- Title: Investigating the translation capabilities of Large Language Models trained on parallel data only
- Authors: Javier GarcĂa Gilabert, Carlos Escolano, Aleix Sant Savall, Francesca De Luca Fornaciari, Audrey Mash, Xixian Liao, Maite Melero,
- Abstract summary: Large Language Models (LLMs) have demonstrated exceptional proficiency across a broad spectrum of Natural Language Processing (NLP) tasks.
We introduce PLUME, a collection of three 2B LLMs featuring varying vocabulary sizes (32k, 128k, and 256k) trained exclusively on Catalan-centric parallel examples.
These models perform comparably to previous encoder-decoder architectures on 16 supervised translation directions and 56 zero-shot ones.
- Score: 1.5974665548135587
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In recent years, Large Language Models (LLMs) have demonstrated exceptional proficiency across a broad spectrum of Natural Language Processing (NLP) tasks, including Machine Translation. However, previous methods predominantly relied on iterative processes such as instruction fine-tuning or continual pre-training, leaving unexplored the challenges of training LLMs solely on parallel data. In this work, we introduce PLUME (Parallel Language Model), a collection of three 2B LLMs featuring varying vocabulary sizes (32k, 128k, and 256k) trained exclusively on Catalan-centric parallel examples. These models perform comparably to previous encoder-decoder architectures on 16 supervised translation directions and 56 zero-shot ones. Utilizing this set of models, we conduct a thorough investigation into the translation capabilities of LLMs, probing their performance, the impact of the different elements of the prompt, and their cross-lingual representation space.
Related papers
- Benchmarking Pre-trained Large Language Models' Potential Across Urdu NLP tasks [0.9786690381850356]
Large Language Models (LLMs) pre-trained on multilingual data have revolutionized natural language processing research.
This study presents an in-depth examination of prominent LLMs, across 14 tasks using 15 Urdu datasets.
Experiments show that SOTA models surpass all the encoder-decoder pre-trained language models in all Urdu NLP tasks with zero-shot learning.
arXiv Detail & Related papers (2024-05-24T11:30:37Z) - Building Accurate Translation-Tailored LLMs with Language Aware Instruction Tuning [57.323716555996114]
Off-target translation remains an unsolved problem, especially for low-resource languages.
Recent works have either designed advanced prompting strategies to highlight the functionality of translation instructions or exploited the in-context learning ability of LLMs.
In this work, we design a two-stage fine-tuning algorithm to improve the instruction-following ability (especially the translation direction) of LLMs.
arXiv Detail & Related papers (2024-03-21T13:47:40Z) - A Novel Paradigm Boosting Translation Capabilities of Large Language Models [11.537249547487045]
The paper proposes a novel paradigm consisting of three stages: Secondary Pre-training using Extensive Monolingual Data, Continual Pre-training with Interlinear Text Format Documents, and Leveraging Source-Language Consistent Instruction for Supervised Fine-Tuning.
Experimental results conducted using the Llama2 model, particularly on Chinese-Llama2, demonstrate the improved translation capabilities of LLMs.
arXiv Detail & Related papers (2024-03-18T02:53:49Z) - Adapting Large Language Models for Document-Level Machine Translation [46.370862171452444]
Large language models (LLMs) have significantly advanced various natural language processing (NLP) tasks.
Recent research indicates that moderately-sized LLMs often outperform larger ones after task-specific fine-tuning.
This study focuses on adapting LLMs for document-level machine translation (DocMT) for specific language pairs.
arXiv Detail & Related papers (2024-01-12T09:29:13Z) - Speech Translation with Large Language Models: An Industrial Practice [64.5419534101104]
We introduce LLM-ST, a novel and effective speech translation model constructed upon a pre-trained large language model (LLM)
By integrating the large language model (LLM) with a speech encoder and employing multi-task instruction tuning, LLM-ST can produce accurate timestamped transcriptions and translations.
Through rigorous experimentation on English and Chinese datasets, we showcase the exceptional performance of LLM-ST.
arXiv Detail & Related papers (2023-12-21T05:32:49Z) - Contextual Code Switching for Machine Translation using Language Models [1.4866655830571935]
Large language models (LLMs) have exerted a considerable impact on diverse language-related tasks in recent years.
We present an extensive study on the code switching task specifically for the machine translation task comparing multiple LLMs.
Our results indicate that despite the LLMs having promising results in the certain tasks, the models with relatively lesser complexity outperform the multilingual large language models in the machine translation task.
arXiv Detail & Related papers (2023-12-20T16:40:33Z) - The Ups and Downs of Large Language Model Inference with Vocabulary Trimming by Language Heuristics [74.99898531299148]
This research examines vocabulary trimming (VT) inspired by restricting embedding entries to the language of interest to bolster time and memory efficiency.
We apply two languages to trim the full vocabulary - Unicode-based script filtering and corpus-based selection - to different language families and sizes.
It is found that VT reduces the memory usage of small models by nearly 50% and has an upper bound of 25% improvement in generation speed.
arXiv Detail & Related papers (2023-11-16T09:35:50Z) - A Paradigm Shift in Machine Translation: Boosting Translation
Performance of Large Language Models [27.777372498182864]
We propose a novel fine-tuning approach for Generative Large Language Models (LLMs)
Our approach consists of two fine-tuning stages: initial fine-tuning on monolingual data followed by subsequent fine-tuning on a small set of high-quality parallel data.
Based on LLaMA-2 as our underlying model, our results show that the model can achieve an average improvement of more than 12 BLEU and 12 COMET over its zero-shot performance.
arXiv Detail & Related papers (2023-09-20T22:53:15Z) - LLM-Pruner: On the Structural Pruning of Large Language Models [65.02607075556742]
Large language models (LLMs) have shown remarkable capabilities in language understanding and generation.
We tackle the compression of LLMs within the bound of two constraints: being task-agnostic and minimizing the reliance on the original training dataset.
Our method, named LLM-Pruner, adopts structural pruning that selectively removes non-critical coupled structures.
arXiv Detail & Related papers (2023-05-19T12:10:53Z) - Chain-of-Dictionary Prompting Elicits Translation in Large Language Models [100.47154959254937]
Large language models (LLMs) have shown surprisingly good performance in multilingual neural machine translation (MNMT)
We present a novel method, CoD, which augments LLMs with prior knowledge with the chains of multilingual dictionaries for a subset of input words to elicit translation abilities.
arXiv Detail & Related papers (2023-05-11T05:19:47Z) - Cross-lingual Transferring of Pre-trained Contextualized Language Models [73.97131976850424]
We propose a novel cross-lingual model transferring framework for PrLMs: TreLM.
To handle the symbol order and sequence length differences between languages, we propose an intermediate TRILayer" structure.
We show the proposed framework significantly outperforms language models trained from scratch with limited data in both performance and efficiency.
arXiv Detail & Related papers (2021-07-27T06:51:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.