DefAn: Definitive Answer Dataset for LLMs Hallucination Evaluation
- URL: http://arxiv.org/abs/2406.09155v1
- Date: Thu, 13 Jun 2024 14:18:13 GMT
- Title: DefAn: Definitive Answer Dataset for LLMs Hallucination Evaluation
- Authors: A B M Ashikur Rahman, Saeed Anwar, Muhammad Usman, Ajmal Mian,
- Abstract summary: Large Language Models (LLMs) have demonstrated remarkable capabilities, revolutionizing the integration of AI in daily life applications.
They are prone to hallucinations, generating claims that contradict established facts, and producing inconsistent responses when the same prompt is presented multiple times.
This paper introduces a comprehensive benchmark dataset comprising over 75,000 prompts across eight domains.
- Score: 39.857198257988685
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large Language Models (LLMs) have demonstrated remarkable capabilities, revolutionizing the integration of AI in daily life applications. However, they are prone to hallucinations, generating claims that contradict established facts, deviating from prompts, and producing inconsistent responses when the same prompt is presented multiple times. Addressing these issues is challenging due to the lack of comprehensive and easily assessable benchmark datasets. Most existing datasets are small and rely on multiple-choice questions, which are inadequate for evaluating the generative prowess of LLMs. To measure hallucination in LLMs, this paper introduces a comprehensive benchmark dataset comprising over 75,000 prompts across eight domains. These prompts are designed to elicit definitive, concise, and informative answers. The dataset is divided into two segments: one publicly available for testing and assessing LLM performance and a hidden segment for benchmarking various LLMs. In our experiments, we tested six LLMs-GPT-3.5, LLama 2, LLama 3, Gemini, Mixtral, and Zephyr-revealing that overall factual hallucination ranges from 59% to 82% on the public dataset and 57% to 76% in the hidden benchmark. Prompt misalignment hallucination ranges from 6% to 95% in the public dataset and 17% to 94% in the hidden counterpart. Average consistency ranges from 21% to 61% and 22% to 63%, respectively. Domain-wise analysis shows that LLM performance significantly deteriorates when asked for specific numeric information while performing moderately with person, location, and date queries. Our dataset demonstrates its efficacy and serves as a comprehensive benchmark for LLM performance evaluation. Our dataset and LLMs responses are available at \href{https://github.com/ashikiut/DefAn}{https://github.com/ashikiut/DefAn}.
Related papers
- LongHalQA: Long-Context Hallucination Evaluation for MultiModal Large Language Models [96.64960606650115]
LongHalQA is an LLM-free hallucination benchmark that comprises 6K long and complex hallucination text.
LongHalQA is featured by GPT4V-generated hallucinatory data that are well aligned with real-world scenarios.
arXiv Detail & Related papers (2024-10-13T18:59:58Z) - Cutting Through the Noise: Boosting LLM Performance on Math Word Problems [52.99006895757801]
Large Language Models excel at solving math word problems, but struggle with real-world problems containing irrelevant information.
We propose a prompting framework that generates adversarial variants of MWPs by adding irrelevant variables.
Fine-tuning on adversarial training instances improves performance on adversarial MWPs by 8%.
arXiv Detail & Related papers (2024-05-30T18:07:13Z) - Are We on the Right Way for Evaluating Large Vision-Language Models? [92.5761176224556]
Large vision-language models (LVLMs) have recently achieved rapid progress, sparking numerous studies to evaluate their multi-modal capabilities.
We identify two primary issues: Visual content is unnecessary for many samples and intentional data leakage exists.
We present MMStar, an elite vision-indispensable multi-modal benchmark comprising 1,500 samples meticulously selected by humans.
arXiv Detail & Related papers (2024-03-29T17:59:34Z) - LLM2LLM: Boosting LLMs with Novel Iterative Data Enhancement [79.31084387589968]
Pretrained large language models (LLMs) are currently state-of-the-art for solving the vast majority of natural language processing tasks.
We propose LLM2LLM, a data augmentation strategy that uses a teacher LLM to enhance a small seed dataset.
We achieve improvements up to 24.2% on the GSM8K dataset, 32.6% on CaseHOLD, 32.0% on SNIPS, 52.6% on TREC and 39.8% on SST-2 over regular fine-tuning in the low-data regime.
arXiv Detail & Related papers (2024-03-22T08:57:07Z) - "Knowing When You Don't Know": A Multilingual Relevance Assessment Dataset for Robust Retrieval-Augmented Generation [90.09260023184932]
Retrieval-Augmented Generation (RAG) grounds Large Language Model (LLM) output by leveraging external knowledge sources to reduce factual hallucinations.
NoMIRACL is a human-annotated dataset for evaluating LLM robustness in RAG across 18 typologically diverse languages.
We measure relevance assessment using: (i) hallucination rate, measuring model tendency to hallucinate, when the answer is not present in passages in the non-relevant subset, and (ii) error rate, measuring model inaccuracy to recognize relevant passages in the relevant subset.
arXiv Detail & Related papers (2023-12-18T17:18:04Z) - Investigating Data Contamination in Modern Benchmarks for Large Language Models [27.479260572913724]
Recent observations have underscored a disparity between the inflated benchmark scores and the actual performance of LLMs.
We study data contamination by proposing two methods tailored for both open-source and proprietary LLMs.
We find that certain commercial LLMs could surprisingly guess the missing option in various test sets.
arXiv Detail & Related papers (2023-11-16T11:03:04Z) - LLMMaps -- A Visual Metaphor for Stratified Evaluation of Large Language
Models [13.659853119356507]
Large Language Models (LLMs) have revolutionized natural language processing and demonstrated impressive capabilities in various tasks.
They are prone to hallucinations, where the model exposes incorrect or false information in its responses.
We propose LLMMaps as a novel visualization technique that enables users to evaluate LLMs' performance with respect to Q&A datasets.
arXiv Detail & Related papers (2023-04-02T05:47:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.