論文の概要: Beyond the Frontier: Predicting Unseen Walls from Occupancy Grids by Learning from Floor Plans
- arxiv url: http://arxiv.org/abs/2406.09160v1
- Date: Thu, 13 Jun 2024 14:22:59 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-14 17:24:35.043342
- Title: Beyond the Frontier: Predicting Unseen Walls from Occupancy Grids by Learning from Floor Plans
- Title(参考訳): 辺境を越えて - フロアプランから学ぶことにより、管理グリッドから見えない壁を予測する
- Authors: Ludvig Ericson, Patric Jensfelt,
- Abstract要約: 本研究では,360deg LIDARセンサの軌跡に沿って集積された占有格子上に2次元の線分を配置し,部分観測環境の見えない壁面を予測する課題に取り組む。
大学キャンパスからのオフィススケールフロアプランのコレクションにおいて、ランダムにサンプリングされたウェイポイントのセット間で仮想ロボットをナビゲートすることにより、そのような占有グリッドとその対象壁セグメントのデータセットを収集する。
行セグメント予測タスクを自己回帰シーケンス予測タスクとして定式化し、データセット上で注目ベースのディープネットワークをトレーニングする。
- 参考スコア(独自算出の注目度): 3.432284729311483
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, we tackle the challenge of predicting the unseen walls of a partially observed environment as a set of 2D line segments, conditioned on occupancy grids integrated along the trajectory of a 360{\deg} LIDAR sensor. A dataset of such occupancy grids and their corresponding target wall segments is collected by navigating a virtual robot between a set of randomly sampled waypoints in a collection of office-scale floor plans from a university campus. The line segment prediction task is formulated as an autoregressive sequence prediction task, and an attention-based deep network is trained on the dataset. The sequence-based autoregressive formulation is evaluated through predicted information gain, as in frontier-based autonomous exploration, demonstrating significant improvements over both non-predictive estimation and convolution-based image prediction found in the literature. Ablations on key components are evaluated, as well as sensor range and the occupancy grid's metric area. Finally, model generality is validated by predicting walls in a novel floor plan reconstructed on-the-fly in a real-world office environment.
- Abstract(参考訳): 本稿では,360{\deg} LIDARセンサの軌跡に沿って集積された占有格子を条件とした2次元線分として,部分観測環境の見えない壁面の予測に挑戦する。
大学キャンパスからのオフィススケールフロアプランのコレクションにおいて、ランダムにサンプリングされたウェイポイントのセット間で仮想ロボットをナビゲートすることにより、そのような占有グリッドとその対象壁セグメントのデータセットを収集する。
行セグメント予測タスクを自己回帰シーケンス予測タスクとして定式化し、データセット上で注目ベースのディープネットワークをトレーニングする。
シーケンスベースの自己回帰定式化は、フロンティアベースの自律探索のような予測情報ゲインを通じて評価され、文献で見られる非予測的推定と畳み込みに基づく画像予測の両方に対して顕著な改善が示されている。
キーコンポーネントのアブレーション、センサ範囲、占有グリッドのメートル法面積を評価した。
最後に、現実のオフィス環境において、現場で再構築された新しいフロアプランの壁を予測し、モデル一般性を検証する。
関連論文リスト
- Towards Effective Next POI Prediction: Spatial and Semantic Augmentation with Remote Sensing Data [10.968721742000653]
本稿では,2段階予測フレームワークにおける効果的なディープラーニング手法を提案する。
本手法は,まずリモートセンシングデータを組み込んで,重要な環境状況の把握を行う。
本研究では,利用者の歴史的トラジェクトリに対するQR-Pグラフを構築し,歴史的旅行知識をカプセル化する。
論文 参考訳(メタデータ) (2024-03-22T04:22:36Z) - OccNeRF: Advancing 3D Occupancy Prediction in LiDAR-Free Environments [77.0399450848749]
本稿では,OccNeRF法を用いて,3次元監視なしで占有ネットワークを訓練する手法を提案する。
我々は、再構成された占有領域をパラメータ化し、サンプリング戦略を再編成し、カメラの無限知覚範囲に合わせる。
意味的占有予測のために,事前学習した開語彙2Dセグメンテーションモデルの出力をフィルタリングし,プロンプトを洗練するためのいくつかの戦略を設計する。
論文 参考訳(メタデータ) (2023-12-14T18:58:52Z) - JRDB-Traj: A Dataset and Benchmark for Trajectory Forecasting in Crowds [79.00975648564483]
ロボット工学、自動運転車、ナビゲーションなどの分野で使用される軌道予測モデルは、現実のシナリオにおいて課題に直面している。
このデータセットは、ロボットの観点から、すべてのエージェント、シーンイメージ、ポイントクラウドの位置を含む包括的なデータを提供する。
本研究の目的は,ロボットに対するエージェントの将来の位置を,生の感覚入力データを用いて予測することである。
論文 参考訳(メタデータ) (2023-11-05T18:59:31Z) - 1st Place Solution for PSG competition with ECCV'22 SenseHuman Workshop [1.5362025549031049]
Panoptic Scene Graph (PSG) の生成は、厳密なバウンディングボックスの代わりに、パノプティックセグメンテーションに基づいてシーングラフ表現を生成することを目的としている。
本稿では,Global Relation Networkの2段階パラダイムであるGRNetを提案する。
我々はOpenPSGデータセットの総合的な実験を行い、リードボード上で最先端のパフォーマンスを達成する。
論文 参考訳(メタデータ) (2023-02-06T09:47:46Z) - Patch-level Gaze Distribution Prediction for Gaze Following [49.93340533068501]
トレーニング後の視線に対するパッチ分布予測(PDP)手法を提案する。
本モデルでは,アノテーションの差が大きい画像上でのより優れたヒートマップ分布を予測することにより,MSE損失の正則化を図っている。
実験により,ターゲット予測とイン/アウト予測サブタスクのギャップを埋めるモデルが得られた。
論文 参考訳(メタデータ) (2022-11-20T19:25:15Z) - A Multi-stage Framework with Mean Subspace Computation and Recursive
Feedback for Online Unsupervised Domain Adaptation [9.109788577327503]
本稿では,対象データがラベル付けされず,オンラインに連続してバッチで到着した場合に,現実の状況を解決するための新しいフレームワークを提案する。
提案手法では,ソースとターゲットドメインから共通部分空間にデータを投影し,投影したデータをリアルタイムに操作する手法を提案する。
提案フレームワークにおける各ステージの効果と寄与を詳細に調査するため,6つのデータセットの実験を行った。
論文 参考訳(メタデータ) (2022-06-24T03:50:34Z) - FloorGenT: Generative Vector Graphic Model of Floor Plans for Robotics [5.71097144710995]
フロアプランを特定の視点から見たラインセグメントのシーケンスとしてモデル化することにより、最近の自己回帰シーケンスモデリングの進歩をフロアプランのモデル化と予測に活用できることが示される。
論文 参考訳(メタデータ) (2022-03-07T13:42:48Z) - TRiPOD: Human Trajectory and Pose Dynamics Forecasting in the Wild [77.59069361196404]
TRiPODは、グラフの注目ネットワークに基づいて身体のダイナミクスを予測する新しい方法です。
実世界の課題を取り入れるために,各フレームで推定された身体関節が可視・視認可能かどうかを示す指標を学習する。
評価の結果,TRiPODは,各軌道に特化して設計され,予測タスクに特化している。
論文 参考訳(メタデータ) (2021-04-08T20:01:00Z) - TraND: Transferable Neighborhood Discovery for Unsupervised Cross-domain
Gait Recognition [77.77786072373942]
本稿では、教師なしクロスドメイン歩行認識のための領域ギャップを橋渡しするTransferable Neighborhood Discovery (TraND) フレームワークを提案する。
我々は、潜在空間におけるラベルなしサンプルの自信ある近傍を自動的に発見するために、エンドツーエンドのトレーニング可能なアプローチを設計する。
提案手法は,CASIA-BとOU-LPの2つの公開データセットに対して,最先端の結果を得る。
論文 参考訳(メタデータ) (2021-02-09T03:07:07Z) - Risk-Averse MPC via Visual-Inertial Input and Recurrent Networks for
Online Collision Avoidance [95.86944752753564]
本稿では,モデル予測制御(MPC)の定式化を拡張したオンライン経路計画アーキテクチャを提案する。
我々のアルゴリズムは、状態推定の共分散を推論するリカレントニューラルネットワーク(RNN)とオブジェクト検出パイプラインを組み合わせる。
本手法のロバスト性は, 複雑な四足歩行ロボットの力学で検証され, ほとんどのロボットプラットフォームに適用可能である。
論文 参考訳(メタデータ) (2020-07-28T07:34:30Z) - STINet: Spatio-Temporal-Interactive Network for Pedestrian Detection and
Trajectory Prediction [24.855059537779294]
本稿では、新しいエンドツーエンド2段階ネットワーク:spatio--Interactive Network(STINet)を提案する。
歩行者の3次元形状に加えて,歩行者ごとの時間情報をモデル化する。
提案手法は,1段目における現在位置と過去の位置の両方を予測し,各歩行者をフレーム間でリンクできるようにする。
論文 参考訳(メタデータ) (2020-05-08T18:43:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。