Fine-Grained Domain Generalization with Feature Structuralization
- URL: http://arxiv.org/abs/2406.09166v3
- Date: Wed, 26 Mar 2025 07:15:23 GMT
- Title: Fine-Grained Domain Generalization with Feature Structuralization
- Authors: Wenlong Yu, Dongyue Chen, Qilong Wang, Qinghua Hu,
- Abstract summary: Fine-grained domain generalization (FGDG) is a more challenging task than traditional DG tasks due to its small inter-class variations and relatively large intra-class disparities.<n>We propose a Feature Structuralized Domain Generalization model, wherein features experience structuralization into common, specific, and confounding segments.
- Score: 36.48094750433708
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Fine-grained domain generalization (FGDG) is a more challenging task than traditional DG tasks due to its small inter-class variations and relatively large intra-class disparities. When domain distribution changes, the vulnerability of subtle features leads to a severe deterioration in model performance. Nevertheless, humans inherently demonstrate the capacity for generalizing to out-of-distribution data, leveraging structured multi-granularity knowledge that emerges from discerning the commonality and specificity within categories. Likewise, we propose a Feature Structuralized Domain Generalization (FSDG) model, wherein features experience structuralization into common, specific, and confounding segments, harmoniously aligned with their relevant semantic concepts, to elevate performance in FGDG. Specifically, feature structuralization (FS) is accomplished through joint optimization of five constraints: a decorrelation function applied to disentangled segments, three constraints ensuring common feature consistency and specific feature distinctiveness, and a prediction calibration term. By imposing these stipulations, FSDG is prompted to disentangle and align features based on multi-granularity knowledge, facilitating robust subtle distinctions among categories. Extensive experimentation on three benchmarks consistently validates the superiority of FSDG over state-of-the-art counterparts, with an average improvement of 6.2% in FGDG performance. Beyond that, the explainability analysis on explicit concept matching intensity between the shared concepts among categories and the model channels, along with experiments on various mainstream model architectures, substantiates the validity of FS.
Related papers
- Multi-Granularity Feature Calibration via VFM for Domain Generalized Semantic Segmentation [15.35795137118814]
Domain Generalized Semantic (DGSS) aims to improve the generalization ability of models across unseen domains without access to target data during training.<n>Recent advances in DGSS have increasingly exploited vision foundation models (VFMs) via parameter-efficient fine-tuning strategies.<n>We propose Multi-Granularity Feature (MGFC), a novel framework that performs coarse-to-fine alignment of VFM features to enhance robustness under domain shifts.
arXiv Detail & Related papers (2025-08-05T02:24:31Z) - Generative Classifier for Domain Generalization [84.92088101715116]
Domain generalization aims to the generalizability of computer vision models toward distribution shifts.
We propose Generative-driven Domain Generalization (GCDG)
GCDG consists of three key modules: Heterogeneity Learning(HLC), Spurious Correlation(SCB), and Diverse Component Balancing(DCB)
arXiv Detail & Related papers (2025-04-03T04:38:33Z) - FEED: Fairness-Enhanced Meta-Learning for Domain Generalization [13.757379847454372]
Generalizing to out-of-distribution data while aware of model fairness is a significant and challenging problem in meta-learning.
This paper introduces an approach to fairness-aware meta-learning that significantly enhances domain generalization capabilities.
arXiv Detail & Related papers (2024-11-02T17:34:33Z) - Causality-inspired Latent Feature Augmentation for Single Domain Generalization [13.735443005394773]
Single domain generalization (Single-DG) intends to develop a generalizable model with only one single training domain to perform well on other unknown target domains.
Under the domain-hungry configuration, how to expand the coverage of source domain and find intrinsic causal features across different distributions is the key to enhancing the models' generalization ability.
We propose a novel causality-inspired latent feature augmentation method for Single-DG by learning the meta-knowledge of feature-level transformation based on causal learning and interventions.
arXiv Detail & Related papers (2024-06-10T02:42:25Z) - HCVP: Leveraging Hierarchical Contrastive Visual Prompt for Domain
Generalization [69.33162366130887]
Domain Generalization (DG) endeavors to create machine learning models that excel in unseen scenarios by learning invariant features.
We introduce a novel method designed to supplement the model with domain-level and task-specific characteristics.
This approach aims to guide the model in more effectively separating invariant features from specific characteristics, thereby boosting the generalization.
arXiv Detail & Related papers (2024-01-18T04:23:21Z) - Towards Domain-Specific Features Disentanglement for Domain
Generalization [23.13095840134744]
We propose a novel contrastive-based disentanglement method CDDG to exploit the over-looked domain-specific features.
Specifically, CDDG learns to decouple inherent mutually exclusive features by leveraging them in the latent space.
Experiments conducted on various benchmark datasets demonstrate the superiority of our method compared to other state-of-the-art approaches.
arXiv Detail & Related papers (2023-10-04T17:51:02Z) - Compound Domain Generalization via Meta-Knowledge Encoding [55.22920476224671]
We introduce Style-induced Domain-specific Normalization (SDNorm) to re-normalize the multi-modal underlying distributions.
We harness the prototype representations, the centroids of classes, to perform relational modeling in the embedding space.
Experiments on four standard Domain Generalization benchmarks reveal that COMEN exceeds the state-of-the-art performance without the need of domain supervision.
arXiv Detail & Related papers (2022-03-24T11:54:59Z) - Towards Principled Disentanglement for Domain Generalization [90.9891372499545]
A fundamental challenge for machine learning models is generalizing to out-of-distribution (OOD) data.
We first formalize the OOD generalization problem as constrained optimization, called Disentanglement-constrained Domain Generalization (DDG)
Based on the transformation, we propose a primal-dual algorithm for joint representation disentanglement and domain generalization.
arXiv Detail & Related papers (2021-11-27T07:36:32Z) - Variational Disentanglement for Domain Generalization [68.85458536180437]
We propose to tackle the problem of domain generalization by delivering an effective framework named Variational Disentanglement Network (VDN)
VDN is capable of disentangling the domain-specific features and task-specific features, where the task-specific features are expected to be better generalized to unseen but related test data.
arXiv Detail & Related papers (2021-09-13T09:55:32Z) - Feature Alignment and Restoration for Domain Generalization and
Adaptation [93.39253443415392]
Cross domain feature alignment has been widely explored to pull the feature distributions of different domains in order to learn domain-invariant representations.
We propose a unified framework termed Feature Alignment and Restoration (FAR) to simultaneously ensure high generalization and discrimination power of the networks.
Experiments on multiple classification benchmarks demonstrate the high performance and strong generalization of our FAR framework for both domain generalization and unsupervised domain adaptation.
arXiv Detail & Related papers (2020-06-22T05:08:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.