Multi-Granularity Feature Calibration via VFM for Domain Generalized Semantic Segmentation
- URL: http://arxiv.org/abs/2508.03007v1
- Date: Tue, 05 Aug 2025 02:24:31 GMT
- Title: Multi-Granularity Feature Calibration via VFM for Domain Generalized Semantic Segmentation
- Authors: Xinhui Li, Xiaojie Guo,
- Abstract summary: Domain Generalized Semantic (DGSS) aims to improve the generalization ability of models across unseen domains without access to target data during training.<n>Recent advances in DGSS have increasingly exploited vision foundation models (VFMs) via parameter-efficient fine-tuning strategies.<n>We propose Multi-Granularity Feature (MGFC), a novel framework that performs coarse-to-fine alignment of VFM features to enhance robustness under domain shifts.
- Score: 15.35795137118814
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Domain Generalized Semantic Segmentation (DGSS) aims to improve the generalization ability of models across unseen domains without access to target data during training. Recent advances in DGSS have increasingly exploited vision foundation models (VFMs) via parameter-efficient fine-tuning strategies. However, most existing approaches concentrate on global feature fine-tuning, while overlooking hierarchical adaptation across feature levels, which is crucial for precise dense prediction. In this paper, we propose Multi-Granularity Feature Calibration (MGFC), a novel framework that performs coarse-to-fine alignment of VFM features to enhance robustness under domain shifts. Specifically, MGFC first calibrates coarse-grained features to capture global contextual semantics and scene-level structure. Then, it refines medium-grained features by promoting category-level feature discriminability. Finally, fine-grained features are calibrated through high-frequency spatial detail enhancement. By performing hierarchical and granularity-aware calibration, MGFC effectively transfers the generalization strengths of VFMs to the domain-specific task of DGSS. Extensive experiments on benchmark datasets demonstrate that our method outperforms state-of-the-art DGSS approaches, highlighting the effectiveness of multi-granularity adaptation for the semantic segmentation task of domain generalization.
Related papers
- Generative Classifier for Domain Generalization [84.92088101715116]
Domain generalization aims to the generalizability of computer vision models toward distribution shifts.<n>We propose Generative-driven Domain Generalization (GCDG)<n>GCDG consists of three key modules: Heterogeneity Learning(HLC), Spurious Correlation(SCB), and Diverse Component Balancing(DCB)
arXiv Detail & Related papers (2025-04-03T04:38:33Z) - FisherTune: Fisher-Guided Robust Tuning of Vision Foundation Models for Domain Generalized Segmentation [65.93276461982093]
Existing approaches either selectively fine-tune parameters or freeze the VFMs and update only the adapters.<n>We propose textbfFisherTune, a robust fine-tuning method guided by the Domain-Related Fisher Information Matrix (DR-FIM)<n>DR-FIM measures parameter sensitivity across tasks and domains, enabling selective updates that preserve generalization and enhance DGSS adaptability.
arXiv Detail & Related papers (2025-03-23T04:47:15Z) - Multisource Collaborative Domain Generalization for Cross-Scene Remote Sensing Image Classification [57.945437355714155]
Cross-scene image classification aims to transfer prior knowledge of ground materials to annotate regions with different distributions.<n>Existing approaches focus on single-source domain generalization to unseen target domains.<n>We propose a novel multi-source collaborative domain generalization framework (MS-CDG) based on homogeneity and heterogeneity characteristics of multi-source remote sensing data.
arXiv Detail & Related papers (2024-12-05T06:15:08Z) - Disentangling Masked Autoencoders for Unsupervised Domain Generalization [57.56744870106124]
Unsupervised domain generalization is fast gaining attention but is still far from well-studied.
Disentangled Masked Auto (DisMAE) aims to discover the disentangled representations that faithfully reveal intrinsic features.
DisMAE co-trains the asymmetric dual-branch architecture with semantic and lightweight variation encoders.
arXiv Detail & Related papers (2024-07-10T11:11:36Z) - FIESTA: Fourier-Based Semantic Augmentation with Uncertainty Guidance for Enhanced Domain Generalizability in Medical Image Segmentation [10.351755243183383]
Single-source domain generalization (SDG) in medical image segmentation (MIS) aims to generalize a model using data from only one source domain to segment data from an unseen target domain.
Existing methods often fail to fully consider the details and uncertain areas prevalent in MIS, leading to mis-segmentation.
This paper proposes a Fourier-based semantic augmentation method called FIESTA using uncertainty guidance to enhance the fundamental goals of MIS.
arXiv Detail & Related papers (2024-06-20T13:37:29Z) - Fine-Grained Domain Generalization with Feature Structuralization [36.48094750433708]
Fine-grained domain generalization (FGDG) is a more challenging task than traditional DG tasks due to its small inter-class variations and relatively large intra-class disparities.<n>We propose a Feature Structuralized Domain Generalization model, wherein features experience structuralization into common, specific, and confounding segments.
arXiv Detail & Related papers (2024-06-13T14:27:53Z) - Gradient Alignment for Cross-Domain Face Anti-Spoofing [26.517887637150594]
We introduce GAC-FAS, a novel learning objective that encourages the model to converge towards an optimal flat minimum.
Unlike conventional sharpness-aware minimizers, GAC-FAS identifies ascending points for each domain and regulates the generalization gradient updates.
We demonstrate the efficacy of GAC-FAS through rigorous testing on challenging cross-domain FAS datasets.
arXiv Detail & Related papers (2024-02-29T02:57:44Z) - HCVP: Leveraging Hierarchical Contrastive Visual Prompt for Domain
Generalization [69.33162366130887]
Domain Generalization (DG) endeavors to create machine learning models that excel in unseen scenarios by learning invariant features.
We introduce a novel method designed to supplement the model with domain-level and task-specific characteristics.
This approach aims to guide the model in more effectively separating invariant features from specific characteristics, thereby boosting the generalization.
arXiv Detail & Related papers (2024-01-18T04:23:21Z) - Towards Domain-Specific Features Disentanglement for Domain
Generalization [23.13095840134744]
We propose a novel contrastive-based disentanglement method CDDG to exploit the over-looked domain-specific features.
Specifically, CDDG learns to decouple inherent mutually exclusive features by leveraging them in the latent space.
Experiments conducted on various benchmark datasets demonstrate the superiority of our method compared to other state-of-the-art approaches.
arXiv Detail & Related papers (2023-10-04T17:51:02Z) - Compound Domain Generalization via Meta-Knowledge Encoding [55.22920476224671]
We introduce Style-induced Domain-specific Normalization (SDNorm) to re-normalize the multi-modal underlying distributions.
We harness the prototype representations, the centroids of classes, to perform relational modeling in the embedding space.
Experiments on four standard Domain Generalization benchmarks reveal that COMEN exceeds the state-of-the-art performance without the need of domain supervision.
arXiv Detail & Related papers (2022-03-24T11:54:59Z) - Domain Generalisation for Object Detection under Covariate and Concept Shift [10.32461766065764]
Domain generalisation aims to promote the learning of domain-invariant features while suppressing domain-specific features.
An approach to domain generalisation for object detection is proposed, the first such approach applicable to any object detection architecture.
arXiv Detail & Related papers (2022-03-10T11:14:18Z) - HCDG: A Hierarchical Consistency Framework for Domain Generalization on
Medical Image Segmentation [33.623948922908184]
We present a novel Hierarchical Consistency framework for Domain Generalization (HCDG)
For the Extrinsic Consistency, we leverage the knowledge across multiple source domains to enforce data-level consistency.
For the Intrinsic Consistency, we perform task-level consistency for the same instance under the dual-task scenario.
arXiv Detail & Related papers (2021-09-13T07:07:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.