論文の概要: Orthogonality and isotropy of speaker and phonetic information in self-supervised speech representations
- arxiv url: http://arxiv.org/abs/2406.09200v1
- Date: Thu, 13 Jun 2024 14:57:18 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-14 17:14:49.377506
- Title: Orthogonality and isotropy of speaker and phonetic information in self-supervised speech representations
- Title(参考訳): 自己教師型音声表現における話者情報と音声情報の直交性と等方性
- Authors: Mukhtar Mohamed, Oli Danyi Liu, Hao Tang, Sharon Goldwater,
- Abstract要約: 表現空間の幾何学に関連する2つの候補特性は、下流のタスクとよく相関していると仮定されている。
両特性の評価に使用できる新しい尺度であるCRV(Cumulative Residual Variance)を導入する。
両測度は音韻探索精度と相関するが, 等方性に関する結果はより微妙である。
- 参考スコア(独自算出の注目度): 11.647970437902762
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Self-supervised speech representations can hugely benefit downstream speech technologies, yet the properties that make them useful are still poorly understood. Two candidate properties related to the geometry of the representation space have been hypothesized to correlate well with downstream tasks: (1) the degree of orthogonality between the subspaces spanned by the speaker centroids and phone centroids, and (2) the isotropy of the space, i.e., the degree to which all dimensions are effectively utilized. To study them, we introduce a new measure, Cumulative Residual Variance (CRV), which can be used to assess both properties. Using linear classifiers for speaker and phone ID to probe the representations of six different self-supervised models and two untrained baselines, we ask whether either orthogonality or isotropy correlate with linear probing accuracy. We find that both measures correlate with phonetic probing accuracy, though our results on isotropy are more nuanced.
- Abstract(参考訳): 自己教師型音声表現は、下流の音声技術に多大な恩恵をもたらすが、それらに役立つ性質はいまだによく理解されていない。
表現空間の幾何学に関連する2つの候補特性は、下流のタスクとよく相関していると仮定されている:(1) 話者セントロイドと電話セントロイドによって広がる部分空間の間の直交性の度合い、(2) 空間の等方性、すなわち、すべての次元が有効に活用される度合い。
そこで本研究では,両特性の評価に使用できるCRV(Cumulative Residual Variance)を新たに導入する。
話者と電話IDの線形分類器を用いて、6つの異なる自己教師付きモデルと2つの非訓練ベースラインの表現を探索し、直交性か等方性かが線形探索精度と相関するかどうかを問う。
両測度は音韻探索精度と相関するが, 等方性に関する結果はより微妙である。
関連論文リスト
- Understanding Probe Behaviors through Variational Bounds of Mutual
Information [53.520525292756005]
情報理論を利用した新しい数学的枠組みを構築することで線形探索のガイドラインを提供する。
まず、プローブ設計を緩和するために、相互情報の変動境界(MI)と探索を結合し、線形探索と微調整を同一視する。
中間表現は、分離性の向上とMIの減少のトレードオフのため、最大のMI推定値を持つことが示される。
論文 参考訳(メタデータ) (2023-12-15T18:38:18Z) - Alignment and Outer Shell Isotropy for Hyperbolic Graph Contrastive
Learning [69.6810940330906]
高品質なグラフ埋め込みを学習するための新しいコントラスト学習フレームワークを提案する。
具体的には、階層的なデータ不変情報を効果的にキャプチャするアライメントメトリックを設計する。
双曲空間において、木の性質に関連する葉と高さの均一性に対処する必要があることを示す。
論文 参考訳(メタデータ) (2023-10-27T15:31:42Z) - Disentangling Voice and Content with Self-Supervision for Speaker
Recognition [57.446013973449645]
本稿では,音声における話者の特性と内容の変動を同時にモデル化するアンタングル化フレームワークを提案する。
実験はVoxCelebとSITWのデータセットで実施され、EERとminDCFの平均減少率は9.56%と8.24%である。
論文 参考訳(メタデータ) (2023-10-02T12:02:07Z) - An Information-Theoretic Analysis of Self-supervised Discrete
Representations of Speech [17.07957283733822]
我々は,各音韻カテゴリーを離散単位上の分布として表現する情報理論フレームワークを開発した。
本研究は,音素分布のエントロピーが下層の音声の変動を反映していることを示す。
本研究は, 直接・一対一対応の欠如を裏付けるものであるが, 音韻カテゴリーと離散単位との間には, 興味深い, 間接的な関係があることを見出した。
論文 参考訳(メタデータ) (2023-06-04T16:52:11Z) - Self-supervised Predictive Coding Models Encode Speaker and Phonetic
Information in Orthogonal Subspaces [14.301142521638123]
自己教師型音声表現は、話者情報と音声情報をエンコードすることが知られている。
話者情報を符号化する部分空間を崩壊させる新しい話者正規化法を提案する。
論文 参考訳(メタデータ) (2023-05-21T14:03:54Z) - Residual Information in Deep Speaker Embedding Architectures [4.619541348328938]
本稿では,最新の高性能DNNアーキテクチャを用いて抽出した6組の話者埋め込みについて解析する。
データセットには46人の話者が同じプロンプトを発信し、プロのスタジオや自宅の環境に記録されている。
その結果、解析された埋め込みの識別力は非常に高いが、分析された全てのアーキテクチャにおいて、残余情報は依然として表現の中に存在することがわかった。
論文 参考訳(メタデータ) (2023-02-06T12:37:57Z) - Self-supervised speech unit discovery from articulatory and acoustic
features using VQ-VAE [2.771610203951056]
本研究では,自己教師型環境下での音声単位の発見に,調音情報をどのように利用できるかを検討する。
我々はベクトル量子化変分オートエンコーダ(VQ-VAE)を用いて音声・音声データから離散表現を学習した。
実験は英語とフランス語の3つの異なるコーパスで行われた。
論文 参考訳(メタデータ) (2022-06-17T14:04:24Z) - Learning Decoupling Features Through Orthogonality Regularization [55.79910376189138]
音声認識におけるキースポッティング(KWS)と話者検証(SV)は2つの重要なタスクである。
我々は,同じネットワーク構造を持つ2分岐のディープネットワーク(KWSブランチとSVブランチ)を開発する。
KWS と SV のパフォーマンスを同時に向上させるために,新しいデカップリング特徴学習法を提案する。
論文 参考訳(メタデータ) (2022-03-31T03:18:13Z) - Preliminary study on using vector quantization latent spaces for TTS/VC
systems with consistent performance [55.10864476206503]
本稿では,潜在言語埋め込みをモデル化するための量子化ベクトルの利用について検討する。
トレーニングにおいて、潜伏空間上の異なるポリシーを強制することにより、潜伏言語埋め込みを得ることができる。
実験の結果,ベクトル量子化法で構築した音声クローニングシステムは,知覚的評価の点でわずかに劣化していることがわかった。
論文 参考訳(メタデータ) (2021-06-25T07:51:35Z) - Do Acoustic Word Embeddings Capture Phonological Similarity? An
Empirical Study [12.210797811981173]
本稿では,音響埋め込み空間内の距離が音韻的相似性と相関しているかを問う。
我々は、AWEモデルを2つの言語(ドイツ語とチェコ語)の制御設定で訓練し、単語識別と音韻的類似性という2つのタスクへの埋め込みを評価する。
実験の結果,(1)ベストケースにおける埋め込み空間内の距離は音韻的距離と適度に相関すること,(2)単語識別タスクの性能向上が必ずしも単語の音韻的類似性を反映したモデルを生成するとは限らないことがわかった。
論文 参考訳(メタデータ) (2021-06-16T10:47:56Z) - Nonlinear ISA with Auxiliary Variables for Learning Speech
Representations [51.9516685516144]
補助変数の存在下では非線型独立部分空間解析(ISA)の理論的枠組みを導入する。
部分空間が独立な教師なし音声表現を学習するアルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-07-25T14:53:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。