DexVLA: Vision-Language Model with Plug-In Diffusion Expert for General Robot Control
- URL: http://arxiv.org/abs/2502.05855v1
- Date: Sun, 09 Feb 2025 11:25:56 GMT
- Title: DexVLA: Vision-Language Model with Plug-In Diffusion Expert for General Robot Control
- Authors: Junjie Wen, Yichen Zhu, Jinming Li, Zhibin Tang, Chaomin Shen, Feifei Feng,
- Abstract summary: Vision-language-action (VLA) models have shown promise for generalizable robot skills.<n>Current VLA models often focus on scaling the vision-language model (VLM) component, while the action space representation remains a critical bottleneck.<n>This paper introduces DexVLA, a novel framework designed to enhance the efficiency and generalization capabilities ofVLAs for complex, long-horizon tasks.
- Score: 7.626715427413578
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Enabling robots to perform diverse tasks across varied environments is a central challenge in robot learning. While vision-language-action (VLA) models have shown promise for generalizable robot skills, realizing their full potential requires addressing limitations in action representation and efficient training. Current VLA models often focus on scaling the vision-language model (VLM) component, while the action space representation remains a critical bottleneck. This paper introduces DexVLA, a novel framework designed to enhance the efficiency and generalization capabilities of VLAs for complex, long-horizon tasks across diverse robot embodiments. DexVLA features a novel diffusion-based action expert, scaled to one billion parameters, designed for cross-embodiment learning. A novel embodiment curriculum learning strategy facilitates efficient training: (1) pre-training the diffusion expert that is separable from the VLA on cross-embodiment data, (2) aligning the VLA model to specific embodiments, and (3) post-training for rapid adaptation to new tasks. We conduct comprehensive experiments across multiple embodiments, including single-arm, bimanual, and dexterous hand, demonstrating DexVLA's adaptability to challenging tasks without task-specific adaptation, its ability to learn dexterous skills on novel embodiments with limited data, and its capacity to complete complex, long-horizon tasks using only direct language prompting, such as laundry folding. In all settings, our method demonstrates superior performance compared to state-of-the-art models like Octo, OpenVLA, and Diffusion Policy.
Related papers
- FlexVLN: Flexible Adaptation for Diverse Vision-and-Language Navigation Tasks [13.969116430006215]
We propose FlexVLN, an innovative hierarchical approach to Vision-and-Language Navigation (VLN)
It integrates the navigation ability of a supervised-learning-based Instruction Follower with the robust generalization ability of the LLM Planner.
We take REVERIE, SOON, and CVDN-target as out-of-domain datasets for assessing generalization ability.
arXiv Detail & Related papers (2025-03-18T06:58:41Z) - MoRE: Unlocking Scalability in Reinforcement Learning for Quadruped Vision-Language-Action Models [34.138699712315]
This paper introduces a novel vision--action (VLA) model, mixture of robotic experts (MoRE) for quadruped robots.
MoRE integrates multiple low-rank adaptation modules as distinct experts within a dense multi-modal large language model.
Experiments demonstrate that MoRE outperforms all baselines across six different skills and exhibits superior generalization capabilities in out-of-distribution scenarios.
arXiv Detail & Related papers (2025-03-11T03:13:45Z) - Fine-Tuning Vision-Language-Action Models: Optimizing Speed and Success [100.226572152954]
We present an optimized fine-tuning recipe for vision-language-action models (VLAs)
Our recipe boosts OpenVLA's average success rate across four task suites from 76.5% to 97.1% while increasing action generation throughput by 26$times$.
In real-world evaluations, our fine-tuning recipe enables OpenVLA to successfully execute dexterous, high-frequency control tasks on a bimanual ALOHA robot.
arXiv Detail & Related papers (2025-02-27T00:30:29Z) - VLABench: A Large-Scale Benchmark for Language-Conditioned Robotics Manipulation with Long-Horizon Reasoning Tasks [100.3234156027118]
We present VLABench, an open-source benchmark for evaluating universal LCM task learning.
VLABench provides 100 carefully designed categories of tasks, with strong randomization in each category of task and a total of 2000+ objects.
The benchmark assesses multiple competencies including understanding of mesh&texture, spatial relationship, semantic instruction, physical laws, knowledge transfer and reasoning.
arXiv Detail & Related papers (2024-12-24T06:03:42Z) - TraceVLA: Visual Trace Prompting Enhances Spatial-Temporal Awareness for Generalist Robotic Policies [95.30717188630432]
We introduce visual trace prompting to facilitate VLA models' spatial-temporal awareness for action prediction.<n>We develop a new TraceVLA model by finetuning OpenVLA on our own collected dataset of 150K robot manipulation trajectories.<n>We present a compact VLA model based on 4B Phi-3-Vision, pretrained on the Open-X-Embodiment and finetuned on our dataset.
arXiv Detail & Related papers (2024-12-13T18:40:51Z) - Vision Language Models are In-Context Value Learners [89.29486557646624]
We present Generative Value Learning (GVL), a universal value function estimator that leverages the world knowledge embedded in vision-language models (VLMs) to predict task progress.
Without any robot or task specific training, GVL can in-context zero-shot and few-shot predict effective values for more than 300 distinct real-world tasks.
arXiv Detail & Related papers (2024-11-07T09:17:50Z) - TinyVLA: Towards Fast, Data-Efficient Vision-Language-Action Models for Robotic Manipulation [32.406783380729024]
Vision-Language-Action (VLA) models have shown remarkable potential in visuomotor control and instruction comprehension through end-to-end learning processes.
Current VLA models face significant challenges: they are slow during inference and require extensive pre-training on large amounts of robotic data.
We introduce a new family of compact vision-language-action models, called TinyVLA, which offers two key advantages over existing VLA models.
arXiv Detail & Related papers (2024-09-19T07:10:18Z) - LLaRA: Supercharging Robot Learning Data for Vision-Language Policy [56.505551117094534]
We introduce LLaRA: Large Language and Robotics Assistant, a framework that formulates robot action policy as visuo-textual conversations.
First, we present an automated pipeline to generate conversation-style instruction tuning data for robots from existing behavior cloning datasets.
We show that a VLM finetuned with a limited amount of such datasets can produce meaningful action decisions for robotic control.
arXiv Detail & Related papers (2024-06-28T17:59:12Z) - OpenVLA: An Open-Source Vision-Language-Action Model [131.74098076670103]
We introduce OpenVLA, an open-source VLA trained on a diverse collection of 970k real-world robot demonstrations.
OpenVLA shows strong results for generalist manipulation, outperforming closed models such as RT-2-X (55B) by 16.5% in absolute task success rate.
We release model checkpoints, fine-tuning notebooks, and our PyTorch with built-in support for training VLAs at scale on Open X-Embodiment datasets.
arXiv Detail & Related papers (2024-06-13T15:46:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.